

Оптический приемопередатчик Форм-фактор SFP28, BiDi 25G, 1270/1330 нм, SMF, 20км, LC NR-SFP-25G-W23-20-LC, NR-SFP-25G-W32-20-LC

Особенности:

- Двунаправленные каналы передачи данных со скоростью до 25,78 Гбит/с
- Горячая замена SFP28
- Один LC для двунаправленной передачи
 - 1270 нм DFB лазерный передатчик для NR-SFP-25G-W23-20-LC
 - 1330 нм DFB лазерный передатчик для NR-SFP-25G-W32-20-LC
- До 20 км на 9/125 мкм SMF
- 2-проводной интерфейс для спецификаций управления, совместимый с цифровым диагностическим интерфейсом мониторинга SFF 8472 для оптических трансиверов
- Источник питания: +3,3 В
- Диапазон рабочих температур корпуса:
- Коммерческий: 0~70 °С
- Соответствует RoHS

- 25GE LR
- eCPRI&CPRI

Описание:

Двунаправленные трансиверы Neoros стандартного температурного диапазона, форм-фактора SFP28 предназначены для использования в соединениях Ethernet со скоростью передачи данных до 25,78 Гбит/с и длиной соединения до 20 км. Они соответствуют SFF-8472 и совместимы с SFF-8432 и соответствующими частями SFF-8431. Изделие соответствует RoHS и не содержит свинца согласно Директиве 2011/96/EU.

Выбор продукта:

NR-SFP-25G-W23-20-LC	Оптический модуль SFP28 LR, BiDi 25GE, Tx1270/Rx1330нм, SMF, 20км, LC
NR-SFP-25G-W32-20-LC	Оптический модуль SFP28 LR, BiDi 25GE, Tx1330/Rx1270нм, SMF, 20км, LC

^{*} рус - Продукция предприятия включена в реестр российской промышленной продукции.

^{*} РЭП - Единый реестр российской радиоэлектронной продукции (ПП РФ 878).

Абсолютные максимальные значения

Эти значения представляют порог повреждения модуля. Нагрузка, превышающая любое из индивидуальных абсолютных максимальных значений, может вызвать немедленное катастрофическое повреждение модуля, даже если все другие параметры находятся в пределах рекомендуемых условий работы.

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Температура хранения	T_{S}	-40		+85	°C
Рабочая температура корпуса	T _e	0		+70	°C
Напряжение питания	V_{CC}	0		3.6	В
Относительная влажность (без конденсации)	RH	0		85	%

Электрические характеристики

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.	Прим.
Напряжение питания	Vcc	3.14		3.46	В	
Ток питания	Icc			450	мА	
Потребляемая мощность	P			1.5	Вт	
Скорость передачи данных	R		25.78		Гб/с	
Длина волокна	L			20	КМ	
Передатчик:						
Входной дифференциальный импеданс	R _{in}		100		Ω	1
Дифференциальный размах входного напряжения	Vin,pp	180		450	мВ	2
Передача напряжения отключения	V_{D}	2		Vcc	В	3
Передача напряжения включения	V_{EN}	Vee		Vee+0.8	В	
Приемник:						
Допуск выходного напряжения с одним выходом	V	-0.3		4	В	
Выходное дифференциальное напряжение Rx	Vo	180		450	мВ	
LOS Fault	$V_{ m LOS\ fault}$	2		Vcc _{HOST}	В	4
LOS Normal	V _{LOS norm}	Vee		Vee+0.8	В	4

Примечания:

- 1. Подключен напрямую к входным контактам данных ТХ. Связь по переменному току от контактов в ИС драйвера лазера.
- 2. Согласно SFF-8431 Rev 3.0
- 3. В дифференциальную нагрузку 100 Ом.
- 4. LOS выход с открытым коллектором. Должен быть подтянут к 4,7 кОм -10 кОм на главной плате. Нормальная работа логический 0; потеря сигнала логическая 1. Максимальное напряжение подтяжки 5,5 В.

Оптические характеристики

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.	Прим.			
Передатчик:									
11	24	1260	1270	1280	НМ	1270 Tx			
Центральная длина волны	λt	1320	1330	1340	НМ	1330 Tx			
ширина спектра (-20 дБ)	Δλ			1	НМ				
Средняя оптическая мощность	Pavg	-5.0		+2.0	дБм				
Мощность выключенного лазера	Poff			-30	дБм				
Коэффициент подавления боковых мод		30							
Коэффициент затухания	ER	3.5			дБ				
Допуск оптических возвратных потерь				-20	дБ				
Приемник:									
Помето и мод пинио родин	λr	1320		1340	НМ	1330 Rx			
Центральная длина волны		1260		1370	НМ	1270 Rx			
Средняя мощность приемника	Sen	-19		-2	дБм				
Чувствительность приемника ОМА	OMA			-19.6		1			
Los Assert	LOSA	-35		=	дБм				
Los Dessert	LOS_D			-20	дБм				
Los Hysteresis	LOS_H	0.5			дБ				
Перегрузка		-7			дБм				

Примечания:

Временные характеристики

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
TX_Disable Assert Time	t_off			100	мкс
TX_Disable Negate Time	t_on			2	мс
Время инициализации 2-проводного интерфейса	t_2w_start_up			300	МС
Время инициализации	t_start_up			300	мс
Время инициализации охлаждаемого модуля и время включения охлаждаемого модуля до уровня мощности II	t_start_up_cooled			90	c
Время включения до уровня II	t_power_level2			300	мс
Время выключения с уровня II	t_power_down			300	мс
Tx_Fault assert	Tx_Fault_on			1	мс
Tx_Fault assert для охлаждаемого модуля	Tx_Fault_on_cooled			50	МС
TX_FAULT Reset	t_reset	10			мкс
Rx_LOS assert delay	t_los_on			100	мкс
Rx_LOS negate delay	t_los_off			100	мкс

^{1.} Измерено с помощью тестового шаблона PRBS 2³¹-1, @25,78 Гбит/с, BER<5E-5.

Характеристики цифровой диагностики

Параметр	Символ	Ед.изм.	Точность	Прим.
Температура приемопередатчика	Temp	°C	±5°C	
Напряжение питания приемопередатчика	Voltage	В	±3%	
Ток смещения передатчика	Bias	мА	±10%	
Выходная мощность передатчика	Tx-Power	дБм	±3 дБ	
Средняя оптическая входная мощность приемника	Rx-Power	дБм	±3 дБ	

Назначение контактов

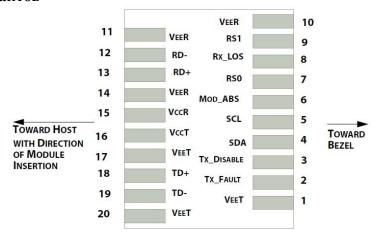
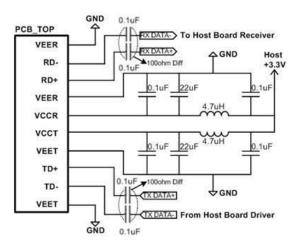
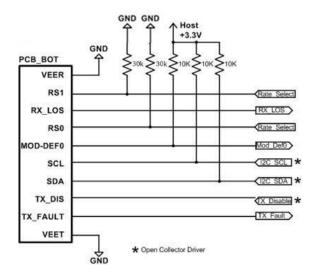


Схема блока разъемов главной платы. Номера и названия контактов

Определение контактов

Контакт	Символ	Название/Описание	Прим.
1	VeeT	Заземление передатчика модуля	1
2	Fault	Неисправность передатчика модуля	2
3	Disable	Отключение передатчика; Отключает выход лазера передатчика	3
4	SDL	2-проводной последовательный интерфейс ввода/вывода данных (SDA)	4
5	SCL	2-проводной последовательный интерфейс ввода часов (SCL)	4
6	MOD-ABS	Модуль отсутствует, подключите к VeeR или VeeT в модуле	2
7	RS0	Выбор скорости 0: входы модуля и подтянуты к VeeT с резисторами > 30 кОм в модуле.	
8	LOS	Индикация потери сигнала приемника	
9	RS1	Выбор скорости 1: входы модуля и подтянуты к VeeT с резисторами > 30 кОм в модуле. Заземление приемника модуля	
10	VeeR	Заземление приемника модуля	1
11	VeeR	Выход инвертированных данных приемника	1
12	RD-	Выход неинвертированных данных приемника	
13	RD+	Заземление приемника модуля	
14	VeeR	Питание приемника модуля 3,3 В	1
15	VccR	Питание передатчика модуля 3,3 В	

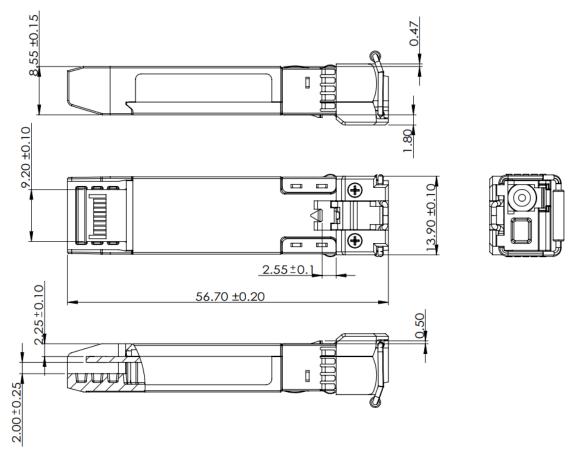



16	VccT	Заземление передатчика модуля	
17	VeeT	Выход неинвертированных данных передатчика	1
18	TD+	Выход инвертированных данных передатчика	
19	TD-	Заземление передатчика модуля	
20	VeeT	Заземление передатчика модуля	1

Примечания:

- 1. Контакты заземления модуля должны быть изолированы от корпуса модуля.
- 2. Этот контакт является выходным контактом с открытым коллектором/стоком и должен быть подтянут на 4,7 кОм-10 кОм к Host_Vcc на главной плате.
- 3. Этот контакт должен быть подтянут на 4,7 кОм-10 кОм к VccT в модуле.
- 4. Этот контакт является выходным контактом с открытым коллектором/стоком и должен быть подтянут на 4,7 кОм-10 кОм к Host_Vcc на главной плате.

Рекомендуемая схема



Рекомендуемая высокоскоростная интерфейсная схема

Габаритные размеры:

ООО «Неорос» оставляет за собой право вносить изменения в продукты или информацию, содержащуюся здесь, без предварительного уведомления.