

Активный оптический кабель Форм-фактор QSFP+, 40Гбит/с NR-QSFP-40G-AOC-XM

Особенности:

- Четырехканальный полнодуплексный активный оптический кабель
- Скорость передачи данных до 11,3 Гбит/с на канал
- Надежная технология массива VCSEL с использованием многомодового волокна
- Доступны стандартные длины 1,3, 5, 10, 15, 20, 30, 50, 100 м
- Низкое энергопотребление <1,5 Вт
- Температура рабочего корпуса от 0°C до +70°C
- Напряжение питания 3,3 В
- Соответствует RoHS
- Форм-фактор QSFP с возможностью горячей замены

Применение:

- Infiniband ODR/DDR/SDR
- Центр обработки данных
- 40G Ethernet
- 4G/8G/10G Fibre Channel

- * <u>РУС</u> Продукция предприятия включена в реестр российской промышленной продукции.
- * **рэп** Единый реестр российской радиоэлектронной продукции (ПП РФ 878).

Описание:

Активные оптические кабели QSFP+ представляют собой высокопроизводительное решение для межсоединений с низким энергопотреблением и большой дальностью действия, поддерживающее Infini Band QDR/DDR/SDR, 12.5G/10G/8G/4G/2G Fibre Channel, PCIe и SAS. Он соответствует QSFP MSA и IEEE P802.3ba. Активная оптическая кабельная сборка QSFP+ представляет собой сборку из 4 полнодуплексных линий, каждая из которых способна передавать данные со скоростью до 11,3 Гбит/с, обеспечивая суммарную скорость 45,2 Гбит/с. Сборка QSFP+ АОС представляет собой один из видов параллельного трансивера, который обеспечивает повышенную плотность портов и общую экономию затрат на систему.

Выбор продукта:

NR-QSFP-40G-AOC-XM Активный оптический кабель 40Гбит/с QSFP+

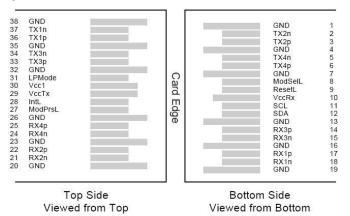
* где "Х" обозначает длину кабеля в метрах.

Примеры следующие: x = 3 для 3 м, x = 10 для 10 м, x = 50 для 50 м, x = A0 для 100 м

Абсолютные максимальные значения

Эксплуатация при превышении любых абсолютных максимальных значений может привести к необратимому повреждению этого модуля.

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Температура хранения	TST	-40		85	°C
Относительная влажность (без конденсации)	RH	0		85	%
Рабочая температура корпуса	TOPC	0		70	$^{\circ}\mathrm{C}$
Напряжение питания	VCC	0		3.6	В
Входное напряжение	Vin	0		Vcc+0.3	В


Рекомендуемые условия эксплуатации и требования к поставкам

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Температура рабочего корпуса	Topc	0		70	°C
Напряжение источника питания	V_{CC}	3.13	3.3	3.47	В
Потребляемая мощность		-		1.5	Вт
Скорость передачи данных	DR	1	10.3	11.3	Гбит/с
Допуск скорости передачи данных	ΔDR	-100		+100	ppm
Расстояние связи с волокном OM3	D	0		100	M
Температура рабочего корпуса	Topc	0		70	°C

Электрические характеристики

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.
Дифференциальное входное сопротивление	Z_{in}	90	100	110	Ом	
Дифференциальное выходное сопротивление	Z _{out}	90	100	110	Ом	
Амплитуда дифференциального входного напряжения	ΔV_{in}	300		1100	мВ пик- пик	
Амплитуда дифференциального выходного напряжения	ΔV_{out}	400		800	мВ пик- пик	
Частота ошибок по битам	BR			E-12		
Входной логический уровень высокий	VIH	2.0		VCC	В	
Входной логический уровень низкий	VIL	0		0.8	В	
Выходной логический уровень высокий	VOH	VCC-0.5		VCC	В	
Выходной логический уровень низкий	VOL	0		0.4	В	

Назначение контактов

Описание контактов

PIN	Логика	Символ	Наименование/Описание	Прим.
1		GND	Земля	1
2	CML-I	Tx2n	Передатчик инвертированный вход данных	
3	CML-I	Tx2p	Передатчик не инвертированный выход данных	
4		GND	Земля	1
5	CML-I	Tx4n	Передатчик инвертированный вход данных	
6	CML-I	Tx4p	Передатчик не инвертированный выход данных	
7		GND	Земля	1
8	LVTLL-I	ModSelL	Выбор модуля	
9	LVTLL-I	ResetL	Сброс модуля	
10		VccRx	+3,3 В источник питания Приемник	2
11	LVCMOS-I/O	SCL	2-проводной последовательный интерфейс Clock	
12	LVCMOS-I/O	SDA	2-проводной последовательный интерфейс Data	
13		GND	Земля	
14	CML-O	Rx3p	Приемник, неинвертированный выход данных	
15	CML-O	Rx3n	Приемник, инвертированный выход данных	
16		GND	Земля	1
17	CML-O	Rx1p	Приемник, неинвертированный выход данных	
18	CML-O	Rx1n	Приемник, инвертированный выход данных	
19		GND	Земля	1
20		GND	Земля	1
21	CML-O	Rx2n	Приемник, инвертированный выход данных	
22	CML-O	Rx2p	Приемник, неинвертированный выход данных	
23		GND	Земля	1
24	CML-O	Rx4n	Приемник, инвертированный выход данных	1
25	CML-O	Rx4p	Приемник, неинвертированный выход данных	
26		GND	Земля	1
27	LVTTL-O	ModPrsL	Модуль присутствует	
28	LVTTL-O	IntL	Прерывание	
29		VccTx	+3,3 В Источник питания Передатчик	2
30		Vcc1	+3,3 В Источник питания	2
31	LVTTL-I	LPMode	Режим низкого энергопотребления	
32		GND	Земля	1
33	CML-I	Tx3p	Передатчик, неинвертированный вход данных	
34	CML-I	Tx3n	Передатчик Инвертированный выход данных	
35		GND	Заземление	
36	CML-I	Tx1p	Передатчик неинвертированный вход данных	
37	CML-I	Tx1n	Передатчик инвертированный выход данных	
38		GND	Заземление	1

Примечания:

- 1. Заземление цепи модуля изолировано от заземления шасси модуля внутри модуля. GND это символ сигнала и питания (питания), общий для модулей QSFP.
- 2. Каждый из контактов разъема рассчитан на максимальный ток 500 мА.

Контакт ModSelL

ModSelL — это входной контакт. Когда хост удерживает низкий уровень, модуль реагирует на команды 2-проводной последовательной связи. ModSelL позволяет использовать несколько модулей QSFP на одной 2-проводной интерфейсной шине. Когда ModSelL имеет уровень «High», модуль не будет реагировать на любые 2-проводные интерфейсные соединения с хостом. ModSelL имеет внутреннюю подтяжку в модуле.

Контакт ResetL

Сброс. LPMode_Reset имеет внутреннюю подтяжку в модуле. Низкий уровень на штырьке ResetL дольше минимальной длительности импульса (t_Reset_init) инициирует полный сброс модуля, возвращая все настройки пользовательского модуля в состояние по умолчанию. Время подтверждения сброса модуля (t_init) начинается с нарастающего фронта после отпускания низкого уровня на штырьке ResetL. Во время выполнения сброса (t_init) хост должен игнорировать все биты состояния, пока модуль не укажет на завершение прерывания сброса. Модуль указывает на это, отправляя сигнал IntL с инвертированным битом

Data_Not_Ready. Обратите внимание, что при включении питания (включая горячую вставку) модуль отправит это завершение прерывания сброса без необходимости сброса.

Контакт LPMode

QSFP+ SR4 работает в режиме низкого энергопотребления (потребление энергии менее 1,5 Вт). Этот активный высокий уровень контакта уменьшит потребление энергии до менее 1 Вт.

Контакт ModPrsL

ModPrsL подтянут к Vcc на плате хоста и заземлен в модуле. ModPrsL утверждается как «Low», когда модуль вставлен, и снимается как «High», когда модуль физически отсутствует в разъеме хоста.

Контакт IntL

IntL является выходным контактом. Когда «Low», он указывает на возможную неисправность работы модуля или состояние, критическое для хост-системы. Хост идентифицирует источник прерывания с помощью 2-проводного последовательного интерфейса. Вывод IntL представляет собой выход с открытым коллектором и должен быть подтянут к Vcc на материнской плате.

Фильтрация питания

Хост-плата должна использовать фильтрацию питания, показанную на рисунке 1.

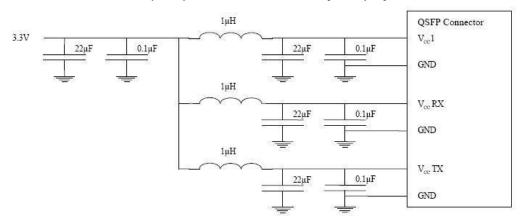


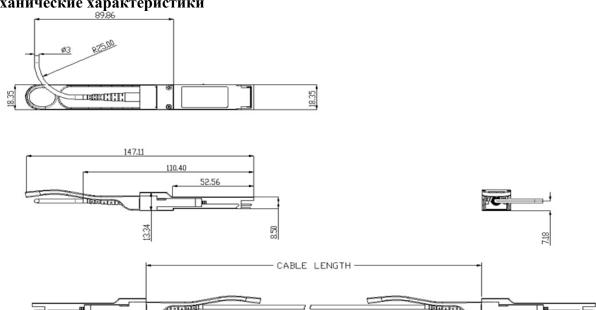
Рисунок 1. Фильтрация питания главной платы

Содержимое памяти последовательного идентификатора EEPROM

Серийный идентификатор: поля данных (страница 00)

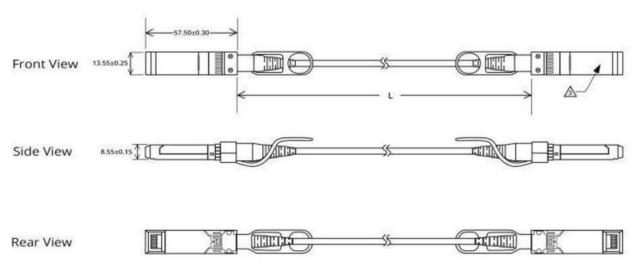
Адрес	Размер (Байт)	Наименование	Описание поля базового идентификатора					
	Базовые поля идентификатора							
128	1	Identifier	Идентификатор типа последовательного модуля					
129	1	Ext. Identifier	Расширенный идентификатор последовательного модуля					
130	1	Connector	Код типа разъема					
131-138	8	Specification compliance	Код электронной совместимости или оптической совместимости					
139	1	Encoding	Код алгоритма последовательного кодирования					
140	1	BR, nominal	Номинальная скорость передачи данных, единицы по 100 Мбит/с					
141	1	Extended Rate select Compliance	Теги для соответствия выбору расширенной скорости					
142	1	Length(SMF)	Поддерживаемая длина линии связи для волокна SMF в км (примечание 1)					
143	1	Length(OM3 50um)	Поддерживаемая длина линии связи для волокна EBW 50/125 мкм (ОМ3), единицы по 2 м (примечание 1)					

Техническое описание


144	1	Length(OM2 50um)	Поддерживаемая длина линии связи для волокна 50/125 мкм (ОМ2), единицы по 1 м (примечание 1)			
145	1	Length(OM1 62.5 um)	Поддерживаемая длина линии связи для волокна 62,5/125 мкм (ОМ1), единицы по 1 м (примечание 1)			
146	1	Length (Copper)	Длина линии связи медного или активного кабеля, единицы по 1 м (примечание 1) Поддерживаемая длина линии связи для волокна 50/125 мкм (ОМ4), единицы по 2 м), когда байт 147 объявляет 850 нм VCSEL			
147	1	Device tech	Технология устройства			
148-163	16	Vendor name	Название поставщика QSFP+ (ASCII)			
164	1	Extended Module	Расширенные коды модулей для InfiniBand			
165-167	3	Vendor OUI	Идентификатор компании IEEE поставщика QSFP+			
168-183	16	Vendor PN	Номер детали, предоставленный поставщиком QSFP+ (ASCII)			
184-185	2	Vendor rev	Уровень ревизии для номера детали, предоставленного поставщиком (ASCII)			
186-187	2	Wave length or Copper Cable Attenuation	Номинальная длина волны лазера (длина волны = значение / 20 в нм) или затухание медного кабеля в дБ на частотах 2,5 ГГц (Adrs 186) и 5,0 ГГц (Adrs 187)			
188-189	2	Wavelength tolerance	Гарантированный диапазон длины волны лазера (+/- значение) от номинальной длины волны. (длина волны допуск = значение / 200 в нм)			
190	1	Max case temp.	Максимальная температура корпуса в градусах Цельсия			
191	1	CC_BASE	Проверочный код для полей базового идентификатора (адреса 128-190)			
		Расширенные поля ид	ентификатора			
192-195	4	Options	Выбор скорости, отключение ТХ, сбой ТХ, LOS, индикаторы предупреждений для: температуры, VCC, мощности RX, смещения ТХ			
196-211	16	Vendor SN	Серийный номер, предоставленный поставщиком (ASCII)			
212-219	8	Date Code	Код даты изготовления поставщика			
220	1	Diagnostic Monitoring Type	Указывает, какие типы диагностического мониторинга реализованы (если таковые имеются) в модуле. Бит 1,0 Зарезервировано			
221	1	Enhanced Options	Указывает, какие дополнительные расширенные функции реализованы в модуле.			
222	1		Зарезервировано			
223	1	CC_EXT	Контрольный код для расширенных полей идентификатора (адреса 192-222)			
Поля идентификатора поставщика						
224-255	32	ı	еляется поставщиком EEPROM			
	·	p-A	, -			

Примечание:

1. Значение, равное нулю, означает, что модуль не поддерживает указанную технологию или что информация о длине должна определяться на основе технологии модуля.



Механические характеристики

Длина

Длина кабеля измеряется между соединениями модульных окончаний (как показано ниже). Приемлемые стандарты также представлены ниже.

Приемлемый стандарт длины кабеля:

Тип кабеля	Длина (м)	Погрешность (см)		
	L≤1	+7~-0		
AOC	1 <l<7< td=""><td>+10~-0</td></l<7<>	+10~-0		
	L≥7	+2%~-0		

Электростатический разряд (ESD)

Этот приемопередатчик имеет порог ESD 1 кВ для высокоскоростных контактов данных и 2 кВ для всех остальных электрических входных контактов, протестирован по MIL-STD-883, метод 3015.4 / JESD22-A114-А (НВМ). Тем не менее, при работе с этим модулем по-прежнему требуются обычные меры предосторожности ESD. Этот приемопередатчик поставляется в защитной упаковке ESD. Его следует извлекать из упаковки и работать только в среде, защищенной от электростатических разрядов (ESD).

ООО «Неорос» оставляет за собой право вносить изменения в продукты или информацию, содержащуюся здесь, без предварительного уведомления.