

Гибридная пассивная медная кабельная сборка Форм-фактор QSFP28 к 4×25Гбит/с SFP28, 100Гбит (4х25Гбит) NR-QSFP-4SFP25G-DAC-XM

Особенности:

- Поддержка от 100 Гбит/с до 4 х 25 Гбит/с
- Поддерживаемая скорость передачи данных: 25,78 Гбит/с (на канал)
- Соответствует IEEE 802.3bj 100GEBASE-CR4 и P802.3by
- Совместим с SFP28 MSA и QSFP28 MSA
- Совместим с SFF-8402, SFF-8432 и SFF8665
- Максимальная совокупная скорость передачи данных: 100 Гбит/с (4 x 25 Гбит/с)
- Высокоплотный разъем QSFP28 38-контактный и 4х SFP28 20-контактный
- Диапазон температур: 0~70 °C
- Длина медного соединения до 5 м
- Источник питания: +3,3 В
- Низкий уровень перекрестных помех
- Двухпроводной последовательный интерфейс на основе I2C для подписи EEPROM, которая может быть на заказ
- Рабочая температура: 0~70 °C
- Соответствует ROHS

Применение:

- 100GE/25 Gigabit Ethernet
- Коммутаторы, маршрутизаторы и НВА
- Центры обработки данных

- * РУС Продукция предприятия включена в реестр российской промышленной продукции.
- * РЭП Единый реестр российской радиоэлектронной продукции (ПП РФ 878).

Описание:

Пассивные кабельные сборки 100GE QSFP28 - 4x25GE SFP28 являются высокопроизводительными, экономически эффективными для межсоединений оборудования SFP28 и QSFP28. Гибридные кабели соответствуют спецификациям SFF-8402 и SFF-8665. Они предлагают низкое энергопотребление, возможность межсоединений на короткой дистанции.

Каждая полоса кабеля способна передавать данные со скоростью до 25 Гбит/с, обеспечивая агрегированную скорость 100 Гбит/с.

Выбор продукта:

Артикул	Описание	AWG
NR-QSFP-4SFP25G-DAC-1M	DAC Гибридная пассивная медная кабельная сборка 100G QSFP28 на 4x SFP28, 0°C ~ +70°C, 1м	30
NR-QSFP-4SFP25G-DAC-3M	DAC Гибридная пассивная медная кабельная сборка 100G QSFP28 на 4x SFP28, 0°C ~ +70°C, 3м	28
NR-QSFP-4SFP25G-DAC-5M	DAC Гибридная пассивная медная кабельная сборка 100G QSFP28 на 4x SFP28, 0°C ~ +70°C, 5м	26

Абсолютные максимальные характеристики:

Параметр	Мин.	Макс.	Ед.изм.
Напряжение питания	-0.3	3.6	В
Входное напряжение данных	-0.3	3.6	В
Входное напряжение управления	-0.3	3.6	В

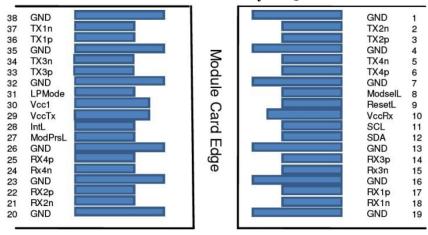
Рекомендуемая среда эксплуатации:

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Рабочая температура корпуса	$T_{\rm C}$	0		+70	°C
Напряжение питания	V _{CCT} , R	+3.13	3.3	+3.47	В
Рассеиваемая мощность	PD			0.1	Вт
Относительная влажность при работе		5		85	%

Электрические характеристики:

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Характеристическое сопротивление		90	100	110	Ω
Временная задержка				4.5	нс/м
Перекос временной задержки (в одной паре)				10	пс
Перекос временной задержки (пара к паре)				50	пс

Высокоскоростные характеристики


Параметр	Обознач.	Мин.	Тип.	Макс.	Ед.изм.	Примечание
Дифференциальный импеданс	RIN,P-P	90	100	110	ОМ	
Вносимая потеря	SDD21	8		22.48	дБ	При 12.8906 ГГц
Дифференциальные	SDD11	12.45		1	дБ	от 0.05 до 4.1 ГГц
возвратные потери	SDD22	3.12		2	дБ	от 4.1 до 19 ГГц
Возвратные потери при переходе из синфазного режима в синфазный	SCC11 SCC22	2			дБ	от 0.2 до 19 ГГц
Дифференциал синфазных обратных	SCD11 SCD22	12		3	- дБ	от 0.01 до 12.89 ГГц
потерь	SCD22	10.58		4	дВ	от 12.89 до 19 ГГц
Дифференциал к		10				от 0.01до 12.89 ГГц
синфазным потерям	SCD21-IL			5	_	от 12.89 до 15.7 ГГц
преобразования		6.3			дБ	от 15.7 до 19 ГГц
Ухудшения, связанные с вертикальным закрытием глаза	COM	3			дБ	

Примечание:

- 1. Коэффициент отражения, определяемый уравнением SDD11(дБ) < 16,5 2 × SQRT(f), где f в ГГц
- 2. Коэффициент отражения, определяемый уравнением SDD11(дБ) $< 10,66-14 \times \log 10(f/5,5)$, с f в ГГц.
- 3. Коэффициент отражения определяется уравнением SCD11(дБ) < 22 (20/25,78)*f, где f в ГГц.
- 4. Коэффициент отражения определяется уравнением SCD11(дE) < 15 (6/25,78)*f, где f в $\Gamma\Gamma$ ц.
- 5. Коэффициент отражения определяется уравнением SCD21(дБ) < 27 (29/22)*f, где f в $\Gamma\Gamma$ ц.

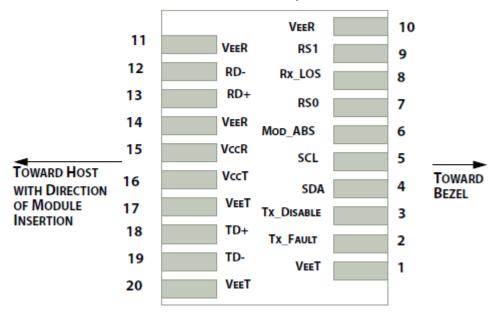
Схема расположения контактных площадок модуля QSFP28

Top Side Viewed From Top

Bottom Side Viewed From Bottom

Описание контактов модуля QSFP28

PIN	Логика	Символ	Название/Описание	Прим.
1		GND	Земля	1
2	CML-I	Tx2n	Передатчик, инвертированный вход данных	
3	CML-I	Tx2p	Передатчик, неинвертированный вход данных	
4		GND	Земля	1
5	CML-I	Tx4n	Передатчик, инвертированный вход данных	
6	CML-I	Tx4p	Передатчик, неинвертированный вход данных	
7		GND	Земля	1
8	LVTTL-I	ModSelL	Выбор модуля	
9	LVTTL-I	ResetL	Сброс модуля	
10		Vcc Rx	+3,3 В Источник питания Приемник	2
11	LVCMOSI/O	SCL	2-проводной последовательный интерфейс, тактовый сигнал	
12	LVCMOSI/O	SDA	2-проводной последовательный интерфейс, данные	
13		GND	Земля	1
14	CML-O	Rx3p	Приемник, неинвертированный выход данных	
15	CML-O	Rx3n	Приемник, инвертированный выход данных	
16		GND	Земля	1
17	CML-O	Rx1p	Приемник, неинвертированный выход данных	
18	CML-O	Rx1n	Приемник, инвертированный выход данных	
19		GND	Земля	1
20		GND	Земля	1
21	CML-O	Rx2n	Приемник, инвертированный выход данных	
22	CML-O	Rx2p	Приемник, неинвертированный выход данных	
23		GND	Заземля	1
24	CML-O	Rx4n	Приемник, инвертированный выход данных	
25	CML-O	Rx4p	Приемник, неинвертированный выход данных	
26		GND	Земля	1
27	LVTTL-O	ModPrsL	Приемник, инвертированный выход данных	
28	LVTTL-O	IntL	Приемник, неинвертированный выход данных	
29		Vcc Tx	Земля	2
30		Vcc1	Модуль присутствует	2
31	LVTTL-I	LPMode	Прерывание	



32		GND	+3,3 В Источник питания Передатчик	1
33	CML-I	Tx3p	+3,3 В Источник питания	
34	CML-I	Tx3n	Режим низкого энергопотребления	
35		GND	Земля	1
36	CML-I	Tx1p	Передатчик, неинвертированный вход данных	
37	CML-I	Tx1n	Передатчик, инвертированные данные Вход	
38		GND	Земля	1

Примечание:

- 1. GND это символ сигнала и питания (питания), общих для модуля QSFP28. Все они являются общими в модуле QSFP28, и все напряжения модуля ссылаются на этот потенциал, если не указано иное. Подключите их напрямую к общей плоскости заземления сигнала главной платы.
- 2. VccRx, Vcc1 и VccTx являются источниками питания приемника и передатчика и должны применяться одновременно. Требования, определенные для стороны хоста разъема Host Edge Card, перечислены в Таблице 6. Рекомендуемая фильтрация питания главной платы показана на Рисунке 4. VccRx, Vcc1 и VccTx могут быть внутренне подключены в модуле модуля QSFP28 в любой комбинации. Каждый из контактов разъема рассчитан на максимальный ток 500 мА.

Схема расположения контактных площадок модуля SFP28

Описание контактов модуля SFP28

PIN	Логика	Символ	Название/Описание	Прим.
1		VeeT	Заземление передатчика	
2	LV-TTL-O	TX_Fault	N/A	1
3	LV-TTL-I	TX_DIS	Отключение передатчика	2
4	LV-TTL-I/O	SDA	Последовательные данные буксирного провода	
5	LV-TTL-I	SCL	Последовательные часы буксирного провода	
6		MOD_DEF0	Модуль присутствует, подключите к VeeT	
7	LV-TTL-I	RS0	N/A	1
8	LV-TTL-O	LOS	LOS сигнала	2
9	LV-TTL-I	RS1	N/A	1
10		VeeR	Заземление приемника	
11		VeeR	Заземление приемника	
12	CML-O	RD-	Данные приемника инвертированы	
13	CML-O	RD+	Данные приемника не инвертированы	
14		VeeR	Заземление приемника	
15		VccR	Питание приемника 3,3 В	
16		VccT	Питание передатчика 3,3 В	
17		VeeT	Заземление передатчика	

18	CML-I	TD+	Данные передатчика не инвертированы	
19	CML_I	TD-	Данные передатчика инвертированы	
20		VeeT	Заземление передатчика	

Примечание:

- 1. Сигналы не поддерживаются в медных SFP28 опущенных до VeeT с резистором 30 кОм
- 2. Пассивные кабельные сборки не поддерживают LOS и TX_DIS

Механические характеристики

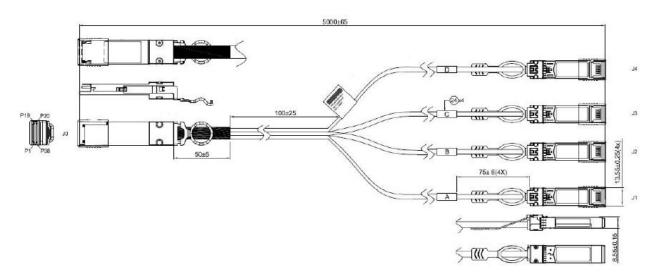


Рисунок. Механические характеристики кабеля

ООО «Неорос» оставляет за собой право вносить изменения в продукты или информацию, содержащуюся здесь, без предварительного уведомления.