

Активный оптический кабель Форм-фактор 400G QSFP-DD на 2x200G QSFP56, 400Gbps NR-QSFPDD-400G-2XQSFP56-AOC-XM

Особенности:

- 8-канальный активный оптический кабель с окончаниями QSFP-DD на два QSFP56
- 26,5625 ГБ РАМ4 × 4 канала на кабель
- Длина кабеля доступна до 70 м на ОМЗ ММБ
- 850 нм VCSEL и приемник PIN
- Форм-фактор QSFP-DD и QSFP56 соответствует MSA
- Горячее подключение
- +3,3 В источник питания
- Максимальная потребляемая мощность: 8,5 Вт на конце QSFP-DD, 5 Вт на каждом конце QSFP56
- Рабочая температура корпуса: 0~+70 °C

Применение:

• Центры обработки данных

Соответствие

- QSFP-DD и QSFP56 MSA
- IEEE 820.3cd
- CMIS Rev4.0
- Соответствие RoHS
- GR-468-CORE
- SFF-8636

Описание:

Активный оптический кабель Neoros NR-QSFPDD-400G-2XQSFP56-AOC-XM — это высокопроизводительный, экономичный модуль AOC, оптимизированный для центров обработки данных, поддерживающий скорость передачи данных от 400G PAM4 до $2 \times 200G$ PAM4.

Конец QSFP-DD объединяет 8 независимых передатчиков и 8 независимых приемников внутри. В модуле использовались две 850-нм матрицы VCSEL, две матрицы PIN, линейный ТIA и линейный драйвер. Каждый конец QSFP56 объединяет 4 независимых передатчика и 4 независимых приемника внутри. В модуле использовались одна 850-нм матрица VCSEL, одна матрица PIN, линейный ТIA и линейный драйвер. Модуль имеет преимущества в виде низкого энергопотребления и низкой стоимости.

Высокоскоростной электрический интерфейс основан на низковольтной логике с номинальным дифференциальным сопротивлением 100 Ом, связанным по переменному току внутренним соединением молуля.

Пользователи могут получить доступ к серии регистров для мониторинга и настройки данных через двухпроводной последовательный интерфейс.

Выбор продукта:

Виобр продукти								
Артикул	Описание							
NR-QSFPDD-400G-2XQSFP56-AOC-XM	Активный оптический кабель 400G QSFP-DD на 2х200G QSFP56, длиной X метров.							
	Программное обеспечение: CMIS Bep.4.0, SFF-8636, Tx: 850 нм VCSEL, Pout: $-6.5 \sim +4$ дБм, Rx: PIN, DDM/RoHs							

^{*} где "Х" обозначает длину кабеля в метрах.

Примеры следующие: x = 1 для 1 м, x = 5 для 5 м, x = 10 для 10 м.

Примечание:

1. Производимая длина кабеля составляет максимум 70 м с использованием волокна ОМЗ.

Абсолютные максимальные показатели:

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Температура хранения	Tst	-40		+85	°C
Напряжение питания	Vcc	3.1		3.6	В
Относительная влажность (без конденсации)	Rh	5		+85	%

Рекомендуемая среда эксплуатации:

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Температура корпуса	Tcase	0		70	°C
Напряжение питания	VCC	3.135	3.3	3.465	В
Ток питания	ICC			2711(QSFP-DD) 1595(QSFP56)	мА
Рассеивание мощности модуля	P			8.5(QSFP-DD) 5 (QSFP56)	Вт

Оптические и электрические характеристики (850нм VCSEL и PIN, 70м OM3 макс.):

Протестировано в рекомендуемых условиях эксплуатации, если не указано иное.

Таблица 3. Рабочие характеристики передатчика QSFP-DD — Оптические:

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Скорость передачи сигналов, каждая полоса	DR		26.5625		ГБд
Формат модуляции	MF		PAM4		
Точность скорости передачи сигналов	SSA	-100		100	ppm
Центральная длина волны	CW		850		НМ
Среднеквадратическая ширина спектра	Δλ			0.6	НМ
Средняя оптическая мощность	РО	-6.5		+4	дБм
Мощность выключенного лазера	Poff			-30	дБм

Таблица 4. Эксплуатационные характеристики приемника QSFP-DD - электрические

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Скорость передачи сигналов, каждая полоса	DR		26.5625		ГБд
Формат модуляции	MF		PAM4		
Дифференциальное выходное напряжение данных от пика до пика	Vopp			900	мВ
Дифференциальное выходное сопротивление	Zos	90	100	110	Ω
Синхронное напряжение	Vcm	-350		2850	мВ
Среднеквадратичное значение синфазного шума				17.5	мВ
Дифференциальные выходные возвратные потери	SDD22				
Преобразование синфазного сигнала в дифференциальный и преобразование дифференциального сигнала в синфазный	SDC22 SCD22	Требования ОІ	дБ		
Синхронные возвратные потери	SCC22			-2	дБ

Таблица 5. Рабочие характеристики передатчика QSFP56 - Оптические

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Скорость передачи сигналов, каждая полоса	DR		26.5625		ГБд
Формат модуляции	MF		PAM4		
Точность скорости передачи сигналов	SSA	-100		100	ppm
Центральная длина волны	CW		850		НМ
Среднеквадратическая ширина спектра	Δλ			0.6	НМ
Средняя оптическая мощность	РО	-6.5		+4	дБм
Мощность выключенного лазера	Poff			-30	дБм

Таблица 6. Эксплуатационные характеристики приемника QSFP56 — электрические

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Скорость передачи сигналов, каждая полоса	DR		26.5625		ГБд
Формат модуляции	MF		PAM4		
Дифференциальное выходное напряжение данных от пика до пика	Vopp			900	мВ
Дифференциальное выходное сопротивление	Zos	90	100	110	Ω
Синхронное напряжение	Vcm	-350		2850	мВ
Среднеквадратичное значение синфазного шума				17.5	мВ
Дифференциальные выходные возвратные потери	SDD22				
Преобразование синфазного сигнала в дифференциальный и преобразование дифференциального сигнала в синфазный	SDC22 SCD22	Требования OIF CEI-56G-VSR-PAM4 и 400GAUI-8			
Синхронные возвратные потери	SCC22			-2	дБ

Цифровые диагностические функции и характеристики времени управления и состояния ввода-вывода

Таблица 7. Цифровые диагностические функции

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.
Абсолютная погрешность показателя температуры	DMI_Temp	-3		+3	°C	[1]
Абсолютная погрешность напряжения питания	DMI_Vcc	-0.1		+0.1	В	[2]
Абсолютная погрешность показателя тока смещения	DMI_Ibias	-10%		+10%	мА	
Абсолютная погрешность показателя мощности лазера	DMI_Tx	-3		+3	дБ	

Примечания:

- [1] Указанная температура измеряется по температуре оболочки около DSP.
- [2] Контроль напряжения питания осуществляется по рабочему напряжению.

Таблица 8. Характеристики времени ввода-вывода управления и состояния QSFP-DD

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.
MgmtInitDuration	Max MgmtInit Duration			2000	МС	[1]
ResetL утверждённое время	t_reset_init	10			МКС	[2]
IntL утверждённое время	ton_IntL			200	МС	[3]
IntL время ожидания	toff_IntL			500	МКС	[4]
Rx LOS утверждённое время	ton_los			100	МС	[5]
Flag утверждённое время	ton_flag			200	МС	[6]
Mask утверждённое время	ton_mask			100	МС	[7]
Mask время ожидания	toff_mask			100	мс	[8]

Примечания:

- [1] Время от включения питания, горячего подключения или переднего фронта сброса до завершения состояния MgmtInit.
- [2] Минимальное время импульса на сигнале ResetL для инициирования сброса модуля.
- [3] Время от возникновения условия, вызывающего IntL, до Vout: IntL=Vol.
- [4] Время от очистки операции чтения связанного флага до Vout: IntL=Voh. Это включает время снятия для Rx LOS, Tx Fault и других флаговых битов.
- [5] Время от состояния Rx LOS до установки бита Rx LOS (значение = 1b) и утверждения IntL.
- [6] Время от возникновения условия, вызывающего флаг, до установки связанного флагового бита (значение = 1b) и утверждения IntL.
- [7] Время от установки бита маски (значение = 1b) до подавления связанного утверждения IntL.
- [8] Время от очистки бита маски (значение = 0b) до возобновления связанной операции IntL.

Таблица 9. Характеристики времени управления и состояния ввода-вывода QSFP56

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.
Время инициализации	t_init			2	c	[1]
Время подтверждения сброса инициализации	t_reset_init	10			мкс	[2]
Время готовности оборудования последовательной шины	t_serial			2	с	[3]
Время готовности данных монитора	t_data			2	c	[4]
Время подтверждения сброса	t_reset			2	c	[5]
Время изменения режима LPMode/TxDis	t_LPMode/ TxDis			100	С	[6]
Время подтверждения LPMode	ton_LPMode			100	мс	[7]
Время отмены подтверждения LPMode	toff_LPMode			300	мс	[8]
Время изменения режима IntL/RxLOSL	t_IntL/ RxLOSL			100	мс	[9]
Время подтверждения IntL	ton_IntL			200	мс	[10]
Время отмены подтверждения IntL	toff_IntL			500	мс	[11]
Время подтверждения Rx LOS	ton_LOS			100	мс	[12]
Время подтверждения Tx Fault	ton_Txfault			200	мс	[13]
Время подтверждения флага	ton_flag			200	мс	[14]
Время подтверждения маски	ton_mask			100	мс	[15]
Время отмены подтверждения маски	toff_mask			100	мс	[16]

Техническое описание

Время подтверждения Power_over-ride или Power-set	ton_Pdown	100	мс	[17]
Время отмены подтверждения Power_over-ride или Power-set	toff_Pdown	300	мс	[18]

Примечания:

- [1] Время от включения питания или горячего подключения до полной работоспособности модуля. Это время применяется к модулям 2 класса мощности или выше, когда LPMode понижается хостом, и ко всем модулям 1 класса мощности.
- [2] Хост должен предоставить импульс сброса не менее минимального значения для модуля, чтобы гарантировать последовательность сброса. Более короткие импульсы могут сбросить модуль в зависимости от реализации.
- [3] Время от включения питания до ответа модуля на передачу данных по двухпроводной последовательной шине.
- [4] Время от включения питания до Data Not Ready, байт 2 бит 0, очищен до 0 и выход IntL понижается.
- [5] Время от переднего фронта на входе ResetL до полной работоспособности модуля.
- [6] Время для переключения между режимами LPMode и TxDis двухрежимного сигнала LPMode/TxDis.
- [7] Время с момента, когда хост переводит LPMode в высокий уровень, до момента, когда энергопотребление модуля достигает класса мощности 1.
- [8] Время с момента, когда хост переводит LPMode в низкий уровень, до момента, когда модуль полностью работоспособен.
- [9] Время переключения между режимами IntL и RxLOSL двухрежимного сигнала IntL/RxLOSL.
- [10] Время от возникновения условия, вызывающего прерывание, до момента, когда IntL становится низким.
- [11] Время от очистки операции чтения соответствующего флага до момента, когда модуль переводит IntL в высокий уровень. Это включает время очистки Rx LOS, Tx Fault и других битов флага.
- [12] Время от потери оптического сигнала Rx до установки бита Rx LOS в 1 и понижения IntL модулем.
- [13] Время от состояния Тх Fault до установки бита Тх Fault в 1 и понижения IntL модулем.
- [14] Время от флага, вызывающего условие, до установки соответствующего бита флага в 1 и понижения IntL модулем.
- [15] Время от установки бита маски в 1 до тех пор, пока модуль не сможет перевести IntL в низкий уровень, когда соответствующий флаг установлен на высокий уровень.
- [16] Время от установки бита маски в 0 до тех пор, пока модуль не сможет перевести IntL в уровень LOW, когда соответствующий флаг установлен на уровень HIGH.
- [17] Время от установки бита Power_override или Power_Set в 1 до тех пор, пока энергопотребление модуля не достигнет класса мощности 1.
- [18] Время от установки бита Power_override или Power_Set в 0 до тех пор, пока модуль не станет полностью функциональным.

Назначение контактов модуля QSFP-DD

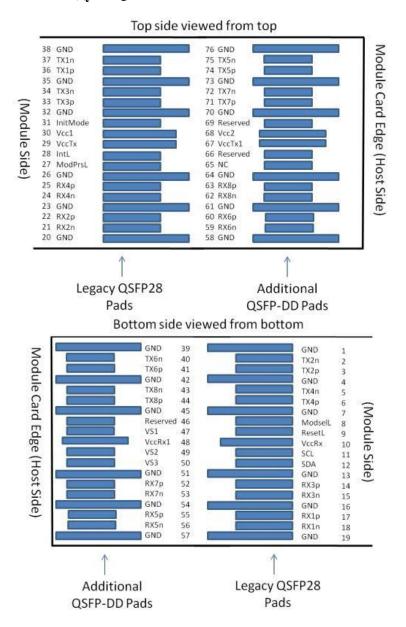


Рисунок 1. Назначение контактов модуля QSFP-DD

Описание функций контактов QSFP-DD

PIN	Логика	Символ	Наименование/Описание		Прим.
1.		GND	Земля	1B	1
2.	CML-I	Tx2n	Передатчик, инвертированный вход данных	3B	
3.	CML-I	Tx2p	Передатчик, неинвертированный вход данных	3B	
4.		GND	Земля	1B	1
5.	CML-I	Tx4n	Передатчик, инвертированный вход данных	3B	
6.	CML-I	Tx4p	Передатчик, неинвертированный вход данных	3B	
7.		GND	Земля	1B	1
8.	LVTLL-I	ModSelL	Выбор модуля	3B	
9.	LVTLL-I	ResetL	Сброс модуля	3B	
10.		VccRx	+3,3 В Источник питания Приемник	2B	2
11.	LVCMOS-I/O	SCL	2-проводной последовательный интерфейс, тактовый сигнал	3B	
12.	LVCMOS-I/O	SDA	2-проводной последовательный интерфейс, данные	3B	

	T	T	T CATIN 10		
13.	C) II O	GND	Земля	1B	1
14.	CML-O	Rx3p	Приемник, неинвертированный выход данных	3B	
15.	CML-O	Rx3n	Приемник, инвертированный выход данных	3B	
16.	G) (7 G)	GND	Земля	1B	1
17.	CML-O	Rx1p	Приемник, неинвертированный выход данных	3B	
18.	CML-O	Rx1n	Приемник, инвертированный выход данных	3B	
19.		GND	Земля	1B	1
20.		GND	Земля	1B	1
21.	CML-O	Rx2n	Инвертированный выход данных приемника	3B	
22.	CML-O	Rx2p	Неинвертированный выход данных приемника	3B	
23.		GND	Заземление	1B	1
24.	CML-O	Rx4n	Инвертированный выход данных приемника	3B	
25.	CML-O	Rx4p	Неинвертированный выход данных приемника	3B	
26.		GND	Заземление	1B	1
27.	LVTTL-O	ModPrsL	Модуль присутствует	3B	
28.	LVTTL-O	IntL	Прерывание	3B	
29.		VccTx	+3,3 В Источник питания передатчика	2B	2
30.		Vcc1	+3,3 В Источник питания	2B	2
31.	LVTTL-I	InitMode	Режим низкого энергопотребления	3B	
32.		GND	Заземление	1B	1
33.	CML-I	Tx3p	Неинвертированный вход данных передатчика	3B	
34.	CML-I	Tx3n	Инвертированный вход данных передатчика	3B	
35.		GND	Заземление	1B	1
36.	CML-I	Tx1p	Неинвертированный вход данных передатчика	3B	
37.	CML-I	Tx1n	Инвертированный вход данных передатчика	3B	
38.		GND	Заземление	1B	1
39.		GND	Неинвертированный вход данных передатчика	1A	1
40.	CML-I	Tx6n	Инвертированный вход данных передатчика	3A	
41.	CML-I	Тхбр	Передатчик неинвертированный вход данных	3A	
42.		GND	Заземление	1A	1
43.	CML-I	Tx8n	Передатчик инвертированный вход данных	3A	
44.	CML-I	Tx8p	Передатчик неинвертированный вход данных	3A	
45.		GND	Заземление	1A	1
46.		Reserved	Для будущего использования	3A	3
47.		VS1	Указанный поставщиком модуля 1	3A	3
48.		VccRx1	Источник питания 3,3 В	2A	2
49.		VS2	Указанный поставщиком модуля 2	3A	3
50.		VS3	Указанный поставщиком модуля 3	3A	3
51.		GND	Земля	1A	1
52.	CML-O	Rx7p	Приемник неинвертированный выход данных	3A	
53.	CML-O	Rx7n	Приемник инвертированный выход данных	3A	
54.		GND	Земля	1A	1
55.	CML-O	Rx5p	Приемник неинвертированный выход данных	3A	
56.	CML-O	Rx5n	Приемник инвертированный выход данных	3A	
57.		GND	Земля	1A	1
58.		GND	Земля	1A	1
59.	CML-O	Rx6n	Приемник инвертированный выход данных	3A	
60.	CML-O	Rx6p	Приемник неинвертированный выход данных	3A	
61.		GND	Земля	1A	1
62.	CML-O	Rx8n	Приемник Инвертированный выход данных	3A	
63.	CML-O	Rx8p	Приемник Неинвертированный выход данных	3A	
64.		GND	Земля	1A	1
65.		NC	Не подключен	3A	3
66.		Reserved	Для будущего использования	3A	3
67.		VccTx1	Источник питания 3,3 В	2A	2
68.		Vcc2	Источник питания 3,3 В	2A	2
69.		Reserved	Вход опорного тактового сигнала протокола	3A	3
09.		Reserved	точного времени (РТР). Не используется.	ЭА	3
70.		GND	Земля	1A	1
	CML-I	Tx7p	Передатчик, неинвертированный вход данных	3A	

72.	CML-I	Tx7n	Передатчик, инвертированный вход данных	3A	
73.		GND	Земля	1A	1
74.	CML-I	Tx5p	Передатчик, неинвертированный вход данных	3A	
75.	CML-I	Tx5n	Передатчик, инвертированный вход данных	3A	
76.		GND	Земля	1A	1

Примечание:

- 1. QSFP-DD использует общее заземление (GND) для всех сигналов и питания (питания). Все они являются общими в модуле QSFP-DD, и все напряжения модуля ссылаются на этот потенциал, если не указано иное. Подключите их напрямую к общей заземляющей плоскости сигнала платы хоста. [2] Этот вывод является выходным выводом с открытым коллектором/стоком и должен быть подтянут на 4,7 кОм к Host_Vcc на плате хоста. Подтягивающие выводы могут быть подключены к нескольким источникам питания, однако конструкция платы хоста должна гарантировать, что ни один вывод модуля не имеет напряжения, превышающего модуль VccT/R + 0,5 В.
- 2. VccRx, VccRx1, Vcc1, Vcc2, VccTx и VccTx1 должны применяться одновременно. Требования, определенные для стороны хоста краевого разъема платы хоста, перечислены в Таблице 6. VccRx, VccRx1, Vcc1, Vcc2, VccTx и VccTx1 могут быть внутренне подключены внутри модуля в любой комбинации. Контакты разъема Vcc рассчитаны на максимальный ток 1000 мА.
- 3. Все контакты Vendor Specific, Reserved и No Connect могут быть подключены к заземлению хоста сопротивлением 50 Ом. Контактная площадка 65 (No Connect) должна оставаться неподключенной внутри модуля. Контактные площадки Vendor Specific и Reserved должны иметь сопротивление GND больше 10 кОм и меньше 100 пФ.
- 4. Последовательность подключения определяет последовательность сопряжения разъема хоста и модуля. Последовательность: 1A, 2A, 3A, 1B, 2B, 3B. (расположение контактных площадок см. на рис. 2) Последовательность контактов А замыкает, а затем размыкает контакт с дополнительными контактными площадками QSFP-DD. Затем одновременно будут выполняться последовательности 1A, 1B, за которыми следуют 2A, 2B, а затем 3A, 3B.

Назначение контактов модуля QSFP56

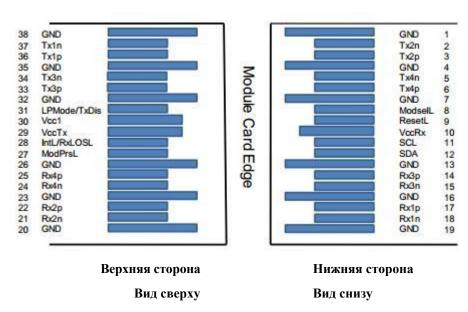
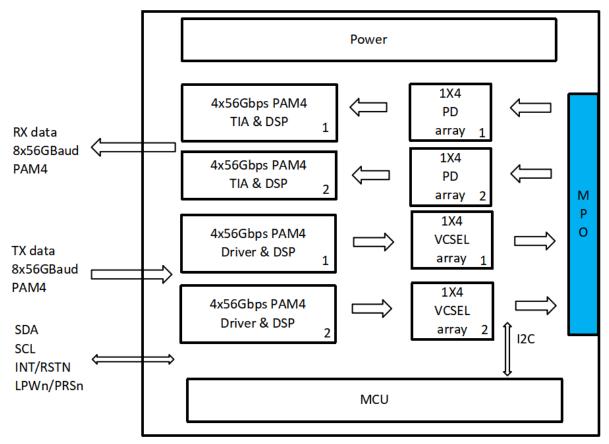


Рисунок 2. Назначение контактов модуля QSFP56

Описание функций контактов QSFP56

PIN	Символ	Наименование/Описание	Прим.
1.	GND	Земля	1
2.	Tx2n	Передатчик, инвертированный вход данных	
3.	Tx2p	Передатчик, неинвертированный вход данных	
4.	GND	Земля	1
5.	Tx4n	Передатчик, инвертированный вход данных	
6.	Tx4p	Передатчик, неинвертированный вход данных	
7.	GND	Земля	
8.	ModSelL	Выбор модуля	
9.	ResetL	Сброс модуля	


10.	Vcc Rx	+3,3 В Источник питания Приемник	2
11.	SCL	2-проводной последовательный интерфейс, тактовый сигнал	
12.	SDA	2-проводной последовательный интерфейс, данные	
13.	GND	Земля	
14.	Rx3p	Приемник, неинвертированный выход данных	
15.	Rx3n	Приемник, инвертированный выход данных	
16.	GND	Земля	1
17.	Rx1p	Приемник неинвертированный выход данных	
18.	Rx1n	Приемник инвертированный выход данных	1
19.	GND	Заземление	1
20.	GND	Заземление	
21.	Rx2n	Приемник инвертированный выход данных	
22.	Rx2p	Приемник неинвертированный выход данных	
23.	GND	Заземление	
24.	Rx4n	Приемник инвертированный выход данных	
25.	Rx4p	Приемник неинвертированный выход данных	
26.	GND	Заземление	1
27.	ModPrsL	Модуль присутствует	
28.	IntL/RxLOS L	Прерывание. Дополнительно настраивается как RxLOSL через интерфейс управления (SFF-8636).	
29.	VccTx	+3,3 В передатчик питания	2
30.	Vcc1	+3,3 В передатчик питания	2
31.	LPMode/TxD is	Режим низкого энергопотребления. Дополнительно настраивается как TxDis через интерфейс управления (SFF-8636).	
32.	GND	Земля	1
33.	Tx3p	Передатчик неинвертированный вход данных	
34.	Tx3n	Передатчик инвертированный вход данных	
35.	GND	Заземление	1
36.	Tx1p	Передатчик неинвертированный вход данных	
37.	Tx1n	Передатчик инвертированный вход данных	
38.	GND	Земля	1

Примечание:

- 5. GND это символ сигнала и питания (питания), общих для модуля. Все они являются общими внутри модуля, и все напряжения модуля относятся к этому потенциалу, если не указано иное. Подключите их напрямую к общей заземляющей плоскости сигнала главной платы.
- 6. VccRx, Vcc1 и VccTx применяются одновременно и могут быть внутренне соединены внутри модуля в любой комбинации. Контакты Vcc в SFF-8662 и SFF-8672 имеют номинальный ток в установившемся режиме 1 A.

Блок-схема трансивера QSFP-DD

Рисунок 3. Блок-схема трансивера QSFP-DD

Блок-схема трансивера QSFP56

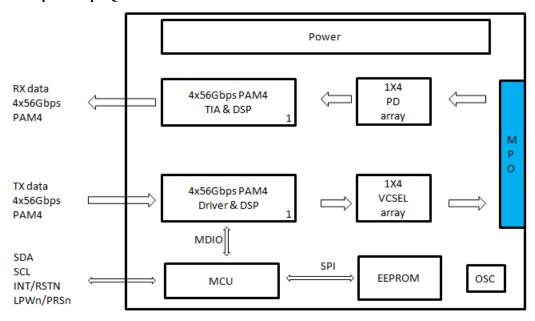


Рисунок 4. Блок-схема трансивера QSFP56

<Секция передатчика>: Электрический сигнал обрабатывается DSP и отправляется драйверу. После получения электрического сигнала от DSP драйвер управляет VCSEL для преобразования электрического сигнала в оптический сигнал для передачи.

Секция приемника>: PD преобразует полученный оптический сигнал в электрический сигнал и передает его в TIA. TIA усиливает сигнал и передает его в DSP для дальнейшей обработки и отправки на хост.

Рекомендуемая схема интерфейса

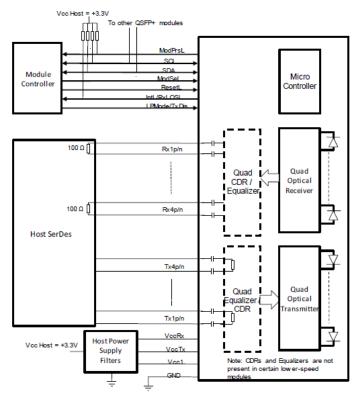


Рисунок 5. Рекомендуемая схема интерфейса трансивера QSFP-DD

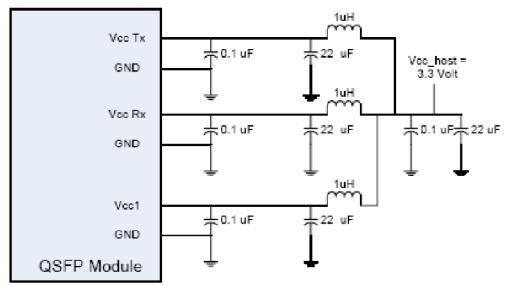


Рисунок 6. Рекомендуемая схема интерфейса трансивера QSFP56

Механические характеристики

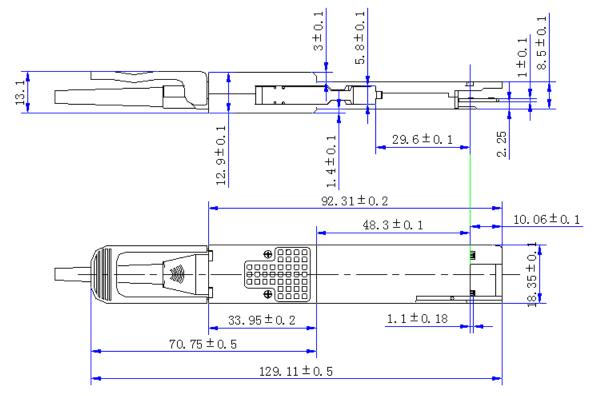


Рисунок 7. Габаритный чертёж трансивера QSFP-DD

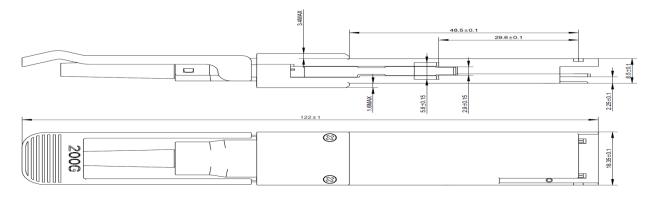


Рисунок 8. Габаритный чертёж трансивера QSFP56

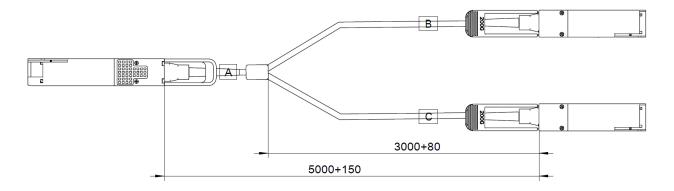


Рисунок 9. Габаритный чертёж кабельной сборки 400G QSFP-DD на 2x200G QSFP56 AOC

ООО «Неорос» оставляет за собой право вносить изменения в продукты или информацию, содержащуюся здесь, без предварительного уведомления.