

Оптический приемопередатчик Форм-фактор SFP+, 1550нм, EML, PIN Receiver, Single Mode, 40км, LCx2 NR-SFP-10G-ER-LC2

Особенности:

- Скорость передачи данных до 11,3 Гбит/с
- Горячая замена SFP+
- Соответствует SFF-8431 SFF-8432 и IEE802.3ae
- Расстояние передачи 40 км по одномодовому волокну
- Охлаждаемый лазерный передатчик EML 1550 нм
- PIN-приемник
- Дуплексный разъем LC
- 2-проводной интерфейс для управления и диагностического мониторинга
- Напряжения питания Single Power 3,3 В
- Диапазон рабочих температур: 0 ~ 70 °C
- Рассеиваемая мощность: <1,5 Вт
- Соответствие RoHS

Применение:

- 10GBASE-ER/EW Ethernet
- 40 км 10G оптоволоконный канал
- SONET OC-192/SDH STM-64

Описание:

Трансивер Neoros NR-SFP-10G-ER-LC2 это очень компактный оптический модуль для последовательных оптических коммуникационных приложений на скорости 10 Гбит/с. Модуль преобразует последовательный электрический поток данных 10 Гбит/с в оптический выходной сигнал 10 Гбит/с и оптический входной сигнал 10 Гбит/с в последовательные электрические потоки данных 10 Гбит/с. Высокоскоростной электрический интерфейс 10 Гбит/с полностью соответствует спецификации SFI.

Высокопроизводительный охлаждаемый передатчик EML 1550 нм и высокочувствительный приемник PIN обеспечивают превосходную производительность для приложений Ethernet на расстояниях до 40 км.

Модуль SFP+ совместим с SFF-8431, SFF-8432 и IEEE 802.3ae 10GBASE-ER. Функции цифровой диагностики доступны через 2-проводной последовательный интерфейс, как указано в SFF-8472.

Полностью совместимый с SFP форм-фактор обеспечивает возможность «горячего» подключения, легкую модернизацию оптического порта и низкий уровень электромагнитных помех.

Выбор продукта:

модуль SFP+, 10GBASE-ER, 1550нм, SMF, 40км, LCx2	NR-SFP-10G-ER-LC2
--	-------------------

- РУС Продукция предприятия включена в реестр российской промышленной продукции.
- * РЭП Единый реестр российской радиоэлектронной продукции (ПП РФ 878).

Абсолютные максимальные рейтинги

Параметр	Символ	Мин.	Макс.	Ед.изм.
Температура хранения	T_{S}	-40	+85	°C
Рабочая температура корпуса	T_{C}	0	70	°C
Максимальное напряжение питания	Vcc	-0.5	4	В
Относительная влажность	RH	0	85	%

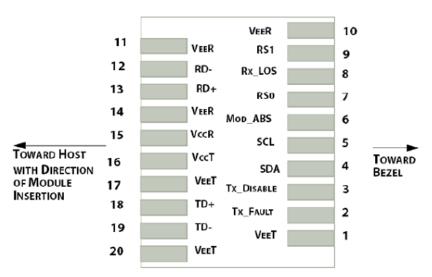
Электрические характеристики

Следующие электрические характеристики определены для Рекомендуемой Рабочей Среды.

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.	Прим.
Напряжение питания	Vcc	3.135		3.465	В	
Ток питания	Icc			450	мА	
Потребляемая мощность	P			1.5	Вт	
Передатчик:						
Входной дифференциальный импеданс	R _{in}		100		Ω	1
Допуск постоянного напряжения на однополярном входе Тх (Ref VeeT)	V	-0.3		4	В	
Размах дифференциального входного напряжения	Vin,pp	180		700	мВ	2
Напряжение отключения передачи	V_{D}	2		Vcc	В	3
Напряжение включения передачи	$V_{\rm EN}$	Vee		Vee+0.8	В	
Приемник:						
Допустимое отклонение выходного напряжения с одного конца	V	-0.3		4	В	
Разница выходного напряжения Rx	Vo	300		850	мВ	
Время нарастания и спада выходного напряжения Rx	Tr/Tf	30			пс	4
Ошибка LOS	$V_{LOS\ fault}$	2		Vcc_{HOST}	В	5
Нормальная LOS	V _{LOS norm}	Vee		Vee+0.8	В	5

Примечание:

- 1. Подключено напрямую к входным контактам данных ТХ. Связь по переменному току от контактов к ИС драйвера лазера.
- 2. Согласно SFF-8431 Rev 3.0
- 3. В дифференциальную нагрузку 100 Ом.
- 4. $20\% \sim 80\%$
- 5. LOS выход с открытым коллектором. Должен быть подтянут к 4,7 кОм -10 кОм на главной плате. Нормальная работа логический 0; потеря сигнала логическая 1. Максимальное напряжение подтяжки 5,5 В.


Оптические характеристики

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.		
Секция передатчика:								
Центральная длина волны	λt	1530	1550	1565	HM			
спектральная ширина	Δλ			0.3	HM			
Средняя оптическая мощность	Pavg	-1		+4	дБм	1		
Оптическая мощность ОМА	Poma	-2.1			дБм			
Мощность выключенного лазера	Poff			-30	дБм			
Коэффициент затухания	ER	6			дБм			
Штраф дисперсии передатчика	TDP			3.0	дБ	2		
Относительная интенсивность	Rin			-128	дБ	3		
шума	Kili			120	дЬ	3		
Допуск оптических возвратных		20			дБ/Гц			
потерь								
Раздел приемника:								
Центральная длина волны	λr	1260		1620	HM			
Чувствительность приемника	Sen			-16	дБм	4		
Напряженная чувствительность	Sen _{ST}			-14	дБм	4		
Los Assert	LOSA	-30			дБм			
Los Dessert	LOS _D			-17	дБм			
Los Hysteresis	LOS _H	0.5			дБм			
Перегрузка	Sat	-1			дБм	5		
Отражение приемника	Rrx			-26	дБ			

Примечания:

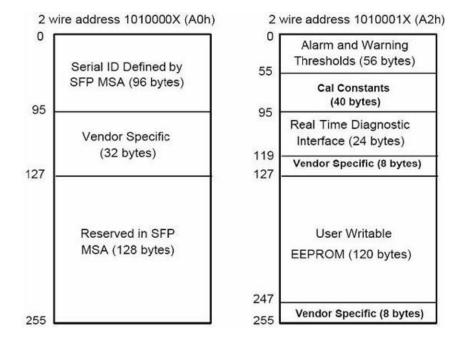
- 1. Средние значения мощности являются только информативными в соответствии с IEEE802.3ae.
- 2. Показатель TWDP требует, чтобы плата хоста соответствовала SFF-8431. TWDP рассчитывается с использованием кода Matlab, предоставленного в разделе 68.6.6.2 IEEE802.3ae.
- 3. 12dB отражения.
- 4. Условия стресс тестов для приемника в соответствии с IEEE802.3ae. Тестирование CSRS требует, чтобы плата хоста соответствовала SFF-8431.
- 5. Перегрузка приемника указана в ОМА и при наихудшем состоянии под нагрузкой.

Распределение контактов:

Описание контактов:

PIN#	Наименование	Функционал	Прим.
1	VeeT	Заземление передатчика модуля	1
2	Tx Fault	Неисправность передатчика модуля	2
3	Tx Disable	Отключение передатчика; отключение выхода лазера передатчика	3
4	SDL	2-проводной последовательный интерфейс ввода/вывода данных (SDA)	
5	SCL	2-проводной последовательный интерфейс ввода часов (SCL)	
6	MOD-ABS	Модуль отсутствует, подключите к VeeR или VeeT в модуле	2
7	RS0	Выбор скорости0, опционально управляет приемником SFP+. При высоком уровне входная скорость передачи данных >4,5 Гбит/с; при низком уровне входная скорость передачи данных <=4,5 Гбит/с	
8	LOS	Индикация потери сигнала приемника	4
9	RS1	Выбор скорости0, опционально управляет передатчиком SFP+. При высоком уровне входная скорость передачи данных >4,5 Гбит/с; при низком уровне входная скорость передачи данных <=4,5 Гбит/с	
10	VeeR	Заземление приемника модуля	1
11	VeeR	Заземление приемника модуля	1
12	RD-	Инверсный выход данных приемника	
13	RD+	Неинверсный выход данных приемника	
14	VeeR	Заземление приемника модуля	1
15	VccR	Питание приемника модуля 3.3В	
16	VccT	Питание передатчика модуля 3.3В	
17	VeeT	Заземление передатчика модуля	1
18	TD+	Неинверсный выход данных передатчика	
19	TD-	Инверсный выход данных передатчика	
20	VeeT	Заземление	

Примечания:


- 1. Контакты заземления модуля должны быть изолированы от корпуса модуля.
- 2. Этот контакт является выходом с открытым коллектором/стоком и должен быть подтянут к $Host_Vcc$ на плате хоста резистором $4.7K-10K\Omega$.
- 3. Этот контакт должен быть подтянут к VccT в модуле резистором $4.7K-10K\Omega$.
- 4. Этот контакт является выходом с открытым коллектором/стоком и должен быть подтянут к $Host_Vcc$ на плате хоста резистором $4.7K-10K\Omega$.

Информация EEPROM модуля SFP и управление

Модули SFP реализуют протокол двухпроводной последовательной связи, как определено в SFP -8472. Последовательную идентификационную информацию модулей SFP и параметры цифрового диагностического мониторинга можно получить через интерфейс I2C по адресам A0h и A2h. Память отображена в таблице 1. Подробная информация о идентификационном модуле (A0h) приведена в таблице 2, а спецификация DDM по адресу A2h. Для получения более подробной информации о карте памяти и определениях байтов, пожалуйста, обратитесь к SFF-8472 «Цифровой диагностический интерфейс для оптических трансиверов». Параметры DDM были внутренне откалиброваны.

Таблица 1. Карта памяти цифрового диагностического модуля (описание полей данных):

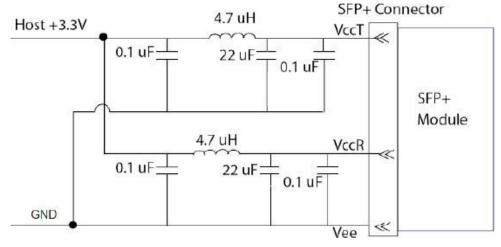
Серийный идентификатор содержимого памяти:

Адрес данных	Длина (Байт)	Имя длины	Описание и содержание
0	1	Идентификатор	Тип последовательного трансивера (03h=SFP)
1	1	Зарезервировано	Расширенный идентификатор типа последовательного трансивера (04h)
2	1	Разъем	Код типа оптического разъема (07=LC)
3-10	8	Трансивер	10GBASE-ER
11	1	Кодирование	64B66B
12	1	Номинальная скорость передачи данных	Номинальная скорость передачи данных в 100 Мбит/с
13	1	Зарезервировано	(0000h)
14	1	Длина (9um км)	Длина линка, поддерживаемая для 9/125um волокна, в км
15	1	Длина (9um)	Длина линка, поддерживаемая для 9/125um волокна, в 100 м
16	1	Длина (50um)	Длина линка, поддерживаемая для 50/125um волокна, в 10 м
17	1	Длина (62.5um)	Длина линка, поддерживаемая для 62.5/125um волокна, в 10 м
18	1	Длина (Медь)	Длина линка, поддерживаемая для медного соединения, в метрах
19	1	Зарезервировано	
20-35	16	Имя производителя	Имя производителя SFP: NEOROS
36	1	Зарезервировано	
37-39	3	OUI производителя	OUI ID производителя трансивера SFP
40-55	16	Артикул производителя	Номер детали: "NR-SFP-10G-ER-LC2" (ASCII)
56-59	4	Ревизия производителя	Уровень ревизии для номера детали

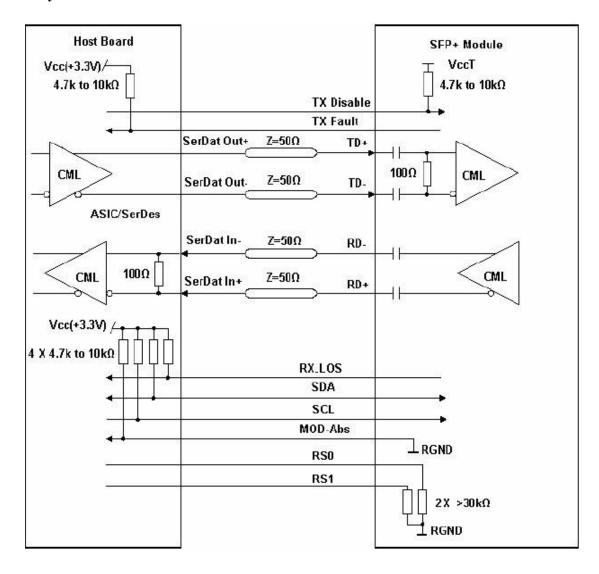
60-61	2	Длина волны	Длина волны лазера			
62	1	Зарезервировано				
63	1	Контрольная сумма ID	Младший значащий байт суммы данных в адресах 0-62			
Дополнит	гельные по	оля ID:				
64-65	2	Опция	Указывает, какие оптические сигналы SFP реализованы (001Ah = LOS TX_FAULT TX_DISABLE все поддерживаются)			
66	1	BR max	Верхний предел скорости передачи данных в %			
67	1	BR min	Нижний предел скорости передачи данных в %			
68-83	16	Серийный номер производителя	Серийный номер (ASCII)			
84-91	8	Код даты	Код даты производства			
92	1	Тип диагностики	Диагностика			
93	1	Расширенные опции	Диагностика			
94	1	SFF-8472	Диагностика			
95	1	Контрольная сумма расширенного ID	Контрольная сумма для расширенных полей ID (адреса 6494)			
Специфи	Специфические ID поля производителя:					
96-127	32	Читаемая	Данные, доступные только для чтения, специфичные для производителя			
128-255	128	Зарезервировано	Зарезервировано для SFF-8079			

Содержимое диагностической памяти (A2h):

Адрес данных	Параметр	Точность	Единица
96-97	Внутренняя температура трансивера	±3.0	°C
98-99	Внутреннее напряжение питания VCC3	±5.0	%
100-101	Ток смещения лазера	±10	%
102-103	Выходная мощность передатчика	±3.0	дБм
104-105	Входная мощность приемника	±3.0	дБм


Соответствие нормативным требованиям

Модуль NR-SFP-10G-ER-LC2 соответствует международным требованиям по электромагнитной совместимости (EMC) и международным стандартам безопасности (см. подробности в таблице ниже).


Параметр	Стандарт	Класс
Электростатический разряд (ESD) на электрические контакты	MIL-STD-883E Метод 3015.7	Класс 1 (>1000 В)
Электростатический разряд (ESD) на разъем Duplex LC	IEC 61000-4-2 GR-1089-CORE	Совместим со стандартами
Электромагнитные помехи (ЕМІ)	FCC Part 15 Class B	Совместим со стандартами
	EN55022 Class B (CISPR 22B)	
	VCCI Class B	
Безопасность лазерного излучения	FDA 21CFR 1040.10 и 1040.11 EN60950 EN (IEC) 60825-12	Совместим с Class 1 лазерным продуктом

Рекомендуемая схема

Рекомендуемая схема питания платы хоста

Механические размеры

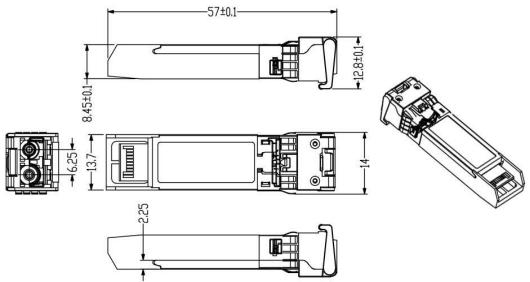


Рисунок: Габаритные характеристики

ООО «Неорос» оставляет за собой право вносить изменения в продукты или информацию, содержащуюся здесь, без предварительного уведомления.