

Оптический приемопередатчик Форм-фактор SFP+, 10GBASE-LR, 1310нм, SMF, 10км, DDM, LCx2 NR-SFP-10G-LR-LC2, NR-SFP-10G-LR-LC2-I

Особенности:

- Рабочая скорость передачи данных: 11,3 Гбит/с
- Расстояние до 10 км
- Один источник питания 3,3 В и логический интерфейс TTL
- Дуплексный LC-разъём
- Горячее подключение
- Соответствует спецификации MSA SFP
- Cootветствует Telcordia GR-253-CORE и IEEE802.3ae
- Интерфейс цифрового диагностического монитора, совместимый с SFF-8472
- Встроенный CDR
- Рабочая температура корпуса:

Коммерческое применение: от 0° Сдо $+70^{\circ}$ С Промышленное применение: от -40° Сдо $+85^{\circ}$ С

Применение:

- 10GBASE-LR
- 10G Fiber Channel
- Другие оптические линии связи

Описание:

Трансивер Neoros NR-SFP-10G-LR-LC2, NR-SFP-10G-LR-LC2-I это компактный подключаемый модуль 10 Гбит/с для дуплексной оптической передачи данных. Соответствует требованиям мультисервисного соглашения SFP+ (MSA: SFF-8431), а также стандартам 10-гигабитного Ethernet IEEE802.3ae и 10G Fiber Channel. Функции цифровой диагностики и информация о стандартном серийном идентификаторе трансивера доступны через двухпроводной последовательный интерфейс SFP+MSA. Трансивер соответствует требованиям RoHS и не содержит свинца согласно Директивам 2002/95/EC и 2005/747/EC.

Выбор продукта:

NR-SFP-10G-LR-LC2	Оптический модуль 10,3125 Гбит/с SFP+, 10GBASE-LR, 1310нм, SMF, 10км, LCx2, 0°C \sim +70°C
NR-SFP-10G-LR-LC2-I	Оптический модуль 10,3125 Гбит/с SFP+, 10GBASE-LR, 1310нм, SMF, 10км, LCx2, -40°C ~ +85°C

- * РУС Продукция предприятия включена в реестр российской промышленной продукции.
- * РЭП Единый реестр российской радиоэлектронной продукции (ПП РФ 878).

Абсолютные максимальные значения

Эти значения определяют порог повреждения модуля. Нагрузка, превышающая любое из индивидуальных абсолютных максимальных значений, может вызвать немедленное катастрофическое повреждение модуля, даже если все другие параметры находятся в пределах рекомендуемых условий работы.

Параметр		Символ	Мин.	Тип.	Макс.	Ед.изм.
Напряжение питания		VCC	0		+4	В
Температура хранения		Тс	-40		+85	°C
Рабочая	Стандартная	Тс	0		+70	°C
температура корпуса	Промышленная	Тс	-40		+85	°C
Относительная влажность		RH	5		95	%

Рекомендуемая рабочая среда

Рекомендуемая рабочая среда определяет параметры, при которых электрические и оптические характеристики остаются в пределах нормы.

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.
Напряжение питания	VCC	3.135	3.300	3.465	В
Рабочая температура корпуса	Тс	0	25	70	°C

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.
D-5	Тс	0		+70	°C	Коммерческий
Рабочая температура корпуса	Тс	-40		+85	°C	Промышленный
Относительная влажность	RH	5		85	%	Без конденсации
Скорость передачи данных		10.	3125/10.	3125	Гбит/с	TX/RX скорость
T	T			300	мА	Коммерческий
Ток источника питания	Icc			450	мА	Промышленный
Дальность передачи данных				10	KM	
Тип оптического волокна			SMF			9/125мкм G.652

Электрические характеристики

Следующие электрические характеристики определены для Рекомендуемой Рабочей Среды.

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.	Прим.	
Приемник:							
Напряжение входов ТХ CML (дифференциальное)	Vin	150	-	950	мВ п-п	Входы, связанные по переменному току	
Входное сопротивление (дифференциальное)	Zin		100		Ω		
Входное напряжение Tx_DISABLE – высокое		1.7	-	Vcc+0.3	В		
Входное напряжение Тх DISABLE – низкое		-0.3	-	0.8	В		
Выходное напряжение Тх_FAULT – высокое		2	-	-	В	ОС-выход должен быть подтянут к питанию резистором 4,7 кОм	

						10 кОм на материнской плате
Выходное напряжение Тх FAULT – низкое		ı	-	0.4	В	IOL = 1 MA
Передатчик:						
Напряжение выходов CML (дифференциальное)	Vout	300	-	850	мВ п-п	Выходы, связанные по переменному току
Выходное сопротивление (дифференциальное)	Zout	1	100	-	Ω	
Выходное напряжение Rx_LOS – высокое		2	-	-	В	ОС-выход должен быть подтянут к питанию резистором 4,7 кОм — 10 кОм на материнской плате
Выходное напряжение Rx LOS – низкое		-	-	0.4	В	IOL = 1 MA
MOD DEE (0.2)	VOH	2.5			В	
MOD_DEF (0:2)	VOL	0		0.5	В	

Оптические характеристики

Следующие оптические характеристики определены для рекомендуемой рабочей среды.

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.	Прим.
Приемник:						
Центральная длина волны	λc	1270	1310	1355	HM	
Коэффициент подавления боковых мод	SMSR	30	-	-	дБ	
Спектральная ширина (-20 дБ)	Δλ	-	-	1	HM	
Средняя выходная мощность	Pout	-8.2	-	0.5	дБм	1
Коэффициент затухания	ER	3.5	-	-	дБ	
Средняя мощность выключенного передатчика	Pout-off	-	-	-30	дБм	
Штраф дисперсии передатчика	TDP	-	-	3.2	дБ	
Допустимый уровень оптических возвратных потерь	ORLT	-	-	12	дБ	
Выходная оптическая диаграмма глаз		Coo	тветствует	IEEE802.3ae	-2005	
Передатчик:						
Центральная длина волны	λc	1260	-	1610	HM	
Чувствительность приёмника	SEN	-	-	-14.4	дБм	2
Перегрузка приёмника	Pmax	0.5	-	-	дБм	
Снятие LOS	LOSD	-	-	-15	дБм	
Утверждение LOS	LOSA	-25	-	-	дБм	
Гистерезис LOS	LOSH	0.5	-	4	дБ	

Примечание:

- 1. Выход подключен к одномодовому оптоволоконному кабелю 9/125 мкм. Типичное значение составляет -2 лБм
- 2. Измерено с помощью тестового шаблона PRBS 2^{31} -1 при скорости 10,3125 Гбит/с, BER $\leq 10^{-12}$.

Назначение контактов

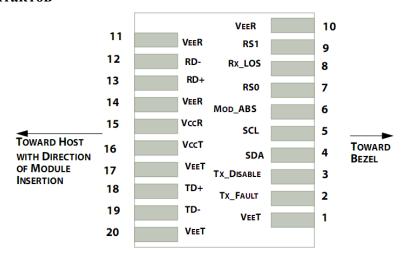


Рисунок 1: Назначение контактов блока разъемов на материнской плате

Определение контактов

Контакт	Символ	Название/Описание	Примечание
1	V _{EET}	Заземление передатчика (общее с заземлением приёмника)	1
2	T _{FAULT}	Неисправность передатчика.	2
3	T _{DIS}	Передатчик отключен. Выход лазера отключен при высоком уровне или обрыве.	3
4	SDA	2-проводная линия данных последовательного интерфейса	4
5	SCL	2-проводная линия синхронизации последовательного интерфейса	4
6	MOD_ABS	Модуль отсутствует. Заземлён внутри модуля	4
7	RS0	Подключение не требуется. Индикация потери сигнала. Логический «0» указывает на нормальную работу.	
8	LOS	Подключение не требуется.	5
9	RS1	Заземление приёмника (общее с заземлением передатчика)	
10	V _{EER}	Заземление приёмника (общее с заземлением передатчика)	1
11	V _{EER}	Инвертированный выход данных приёмника. Связь по переменному току	1
12	RD-	Неинвертированный выход данных приёмника. Связь по переменному току	
13	RD+	Заземление приёмника (общее с заземлением передатчика)	
14	V	Источник питания приёмника	1
15	V _{CCR}	Источник питания передатчика	
16	V _{CCT}	Заземление передатчика (общее с заземлением приёмника)	
17	V _{EET}	Неинвертированный вход данных передатчика. Связь по переменному току	1
18	TD+	Инвертированный вход данных передатчика. Связь по переменному току	
19	TD-	Заземление передатчика (общее с заземлением приемника)	
20	V _{EET}	Заземление передатчика (общее с заземлением приёмника)	1

Примечания:

1. Заземление схемы внутренне изолирована от земли шасси.

- 2. Сигнал ТХ Fault представляет собой выход с открытым стоком, который должен быть подтянут к плюсу резистором 4,7 кОм ~ 10 кОм на материнской плате. Напряжение подтяжки находится в диапазоне от 2,0 В до VccT/R+0,3 В. Высокий уровень выходного сигнала указывает на неисправность лазера. Низкий уровень указывает на нормальную работу. В низком состоянии выходной сигнал подтянут к < 0,8 В. При обнаружении ненадлежащего уровня мощности в драйвере лазера SFP устанавливает этот сигнал в высокий уровень и выключает лазер. Сигнал ТХ-FAULT можно сбросить с помощью линии ТХ-DISABLE. Сигнал находится на уровне LVTTL.</p>
- 3. Сигнал отключения ТХ это вход, который используется для отключения оптического выхода передатчика. Он подтянут к плюсу внутри модуля резистором 4,7 кОм ~ 10 кОм. Его состояния: Низкий уровень (0 ~ 0,8 В): передатчик включен; (>0,8, <2,0 В): Не определено; Высокий уровень (от 2,0 В до VccT/R+0,3 В): Передатчик отключен; Разомкнут: Передатчик отключен. Высокий уровень сигнала ТХ-DISABLE (логическая «1» LVTTL) отключает выход лазера. Лазер включается при низком уровне сигнала ТХ-DISABLE (логический «0» LVTTL).
- 4. Необходимо подтянуть резистором 4,7 кОм ~ 10 кОм на материнской плате к напряжению от 2,0 В до VccT/R+0,3 В. Низкий уровень на линии MOD ABS указывает на подключение модуля.
- 5. LOS (потеря сигнала) это выход с открытым коллектором/стоком, который необходимо подтянуть резистором 4,7 кОм ~ 10 кОм. Напряжение подтяжки должно быть от 2,0 В до VccT/R+0,3 В. Высокий уровень выходного сигнала указывает на то, что мощность принимаемого оптического сигнала ниже наихудшего значения чувствительности приёмника (согласно используемому стандарту). Низкий уровень указывает на нормальную работу. В низком состоянии выходной сигнал будет подтянут до <0,8 В.
- 6. Сигнал RX-LOS имеет высокий уровень (LVTTL логическая «1») при отсутствии входящего излучения от приёмопередатчика. Этот сигнал обычно используется системой для диагностики. Сигнал работает на уровне LVTTL.

Функции цифрового диагностического мониторинга

Трансивер поддерживает интерфейс диагностического мониторинга (DMI) на базе I2C, описанный в документе SFF-8472. Хост может получать доступ к данным в режиме реального времени о мощности оптического излучения передатчика и приемника, температуре, напряжении питания и токе смещения.

Параметр	Точность	Ед.измерения
Температура корпуса	±3	°C
Напряжение питания	±3%	В
Ток смещения передатчика	±10%	мА
Оптическая мощность передатчика	±3	дБ
Оптическая мощность приёмника	±3	дБ

Соответствие нормативным требованиям

Характеристика	Соответствие	Производительность
Электромагнитная совместимость (ЕМС)	EN61000-3	Соответствует стандартам
Электростатический разряд (ESD)	IEC/EN 61000-4-2	Соответствует стандартам
Электромагнитные помехи (ЕМІ)	FCC Part 15 Class B EN 55022 Class B (CISPR 22A)	Соответствует стандартам
Безопасность лазера для глаз	FDA 21CFR 1040.10, 1040.11 IEC/EN 60825-1, EC/EN 60825-2	Лазерный продукт класса 1
Распознавание компонентов	IEC/EN 60950, L 60950	Соответствует стандартам
RoHS 2.0	2002/95/EC	Соответствует стандартам

Механические спецификации

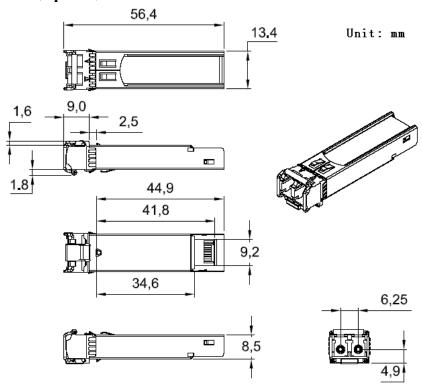


Рисунок 2: Механические спецификации

ООО «Неорос» оставляет за собой право вносить изменения в продукты или информацию, содержащуюся здесь, без предварительного уведомления.