
Оптический приемопередатчик Форм-фактор SFP+, 1310нм, DFB, PIN приёмник, SMF, 40км, LCx2 NR-SFP-10G-LR40-LC2

Особенности:

- Поддержка нескольких протоколов от 8,5 Гбит/с до 11,3 Гбит/с
- Горячая замена SFP+
- Соответствует SFF-8431 SFF-8432 и IEE802.3ae
- SMF-соединения до 40 км
- 1310 нм DFB лазерный передатчик
- PIN-приемник
- Дуплексный разъем LC
- 2-проводной интерфейс для управления и диагностического мониторинга
- Единое напряжение питания 3,3 В
- Диапазон температур от 0 °C до 70 °C
- Рассеиваемая мощность: <1,5 Вт
- Соответствует RoHS

Применение:

- 10GBASE-ER/EW Ethernet
- 40 км 10G оптоволоконный канал
- SONET OC-192/SDH STM-64

Описание:

Трансивер Neoros NR-SFP-10G-LR40-LC2 очень компактный оптический приемопередающий модуль 10 Гбит/с для последовательных оптических коммуникационных приложений на скорости 10 Гбит/с. ОР3940D-13 преобразует последовательный электрический поток данных 10 Гбит/с в оптический выходной сигнал 10 Гбит/с и оптический входной сигнал 10 Гбит/с в последовательные электрические потоки данных 10 Гбит/с. Высокоскоростной электрический интерфейс 10 Гбит/с полностью соответствует спецификации SFI.

Высокопроизводительный передатчик DFB 1310 нм и высокочувствительный приемник PIN обеспечивают превосходную производительность для приложений Ethernet на расстояниях до 40 км.

Модуль SFP+ совместим с SFF-8431, SFF-8432 и IEEE 802.3ae 10GBASE-ER. Функции цифровой диагностики доступны через 2-проводной последовательный интерфейс, как указано в SFF-8472.

Полностью совместимый с SFP форм-фактор обеспечивает возможность «горячего» подключения, легкую модернизацию оптического порта и низкий уровень электромагнитных помех.

Выбор продукта:

NR-SFP-10G-LR40-LC2	Оптический модуль SFP+, 10GBASE-LR, 1310нм, SMF, 40км, LCx2
---------------------	---

Абсолютные максимальные рейтинги

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.
Температура хранения	T_{S}	-40		+85	°C
Рабочая температура корпуса	T_{C}	0		70	°C
Максимальное напряжение питания	Vcc	-0.5		4	В
Относительная влажность	RH	0		85	%

Электрические характеристики

Следующие электрические характеристики определены для Рекомендуемой Рабочей Среды.

Параметр	Символ	Мин.	Типовое	Макс.	Ед.изм.	Прим.
Напряжение питания	Vec	3.135		3.465	В	
Ток питания	Icc			450	мА	
Потребляемая мощность	P			1.5	Вт	
Передатчик:						
Входной дифференциальный импеданс	R _{in}		100		Ω	1
Допуск постоянного напряжения на однополярном входе Тх (Ref VeeT)	V	-0.3		4	В	
Размах дифференциального входного напряжения	Vin,pp	180		700	мВ	2
Напряжение отключения передачи	V_{D}	2		Vcc	В	3
Напряжение включения передачи	V_{EN}	Vee		Vee+0.8	В	
Приемник:						
Допустимое отклонение выходного напряжения с одного конца	V	-0.3		4	В	
Разница выходного напряжения Rx	Vo	300		850	мВ	
Время нарастания и спада выходного напряжения Rx	Tr/Tf	30			пс	4
Ошибка LOS	V _{LOS fault}	2		Vcc _{HOST}	В	5
Нормальная LOS	V _{LOS norm}	Vee		Vee+0.8	В	5

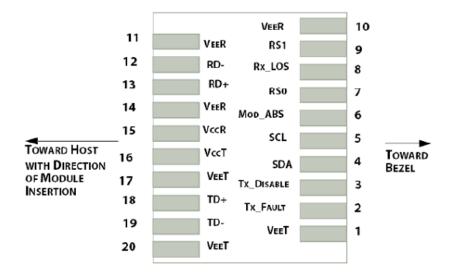
Примечание:

- 1. Подключено напрямую к входным контактам данных ТХ. Связь по переменному току от контактов к ИС драйвера лазера.
- 2. Согласно SFF-8431 Rev 3.0
- 3. В дифференциальную нагрузку 100 Ом.
- 4. 20%~80%
- 5. LOS выход с открытым коллектором. Должен быть подтянут к 4,7 кОм 10 кОм на главной плате. Нормальная работа логический 0; потеря сигнала логическая 1. Максимальное напряжение подтяжки 5.5 В.

Оптические характеристики

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.	
Передатчик:							
Центральная длина волны	λt	1260	1310	1355	HM		
спектральная ширина	Δλ			0.4	HM		
Средняя оптическая мощность	Pavg	-1		+4	дБм	1	
Мощность выключенного лазера	Poff			-30	дБм		
Коэффициент затухания	ER	3.5			дБ		
Штраф дисперсии передатчика	TDP			3.0	дБ	2	
Относительная интенсивность шума	Rin			-128	дБ/Гц	3	
Допуск оптических возвратных потерь		20			дБ		
Приемник:							
Центральная длина волны	λr	1260		1620	HM		
Чувствительность приемника	Sen			-16	дБм	4	
Напряженная чувствительность	Sen _{ST}			-14	дБм	4	
Los Assert	LOS_A	-30		-	дБм		
Los Dessert	LOS_D			-17	дБм		
Los Hysteresis	LOS _H	0.5			дБ		
Перегрузка	Sat	-1			дБм	5	
Отражение приемника	Rrx			-26	дБ		

Примечание:


- 1. Средние показатели мощности носят исключительно информативный характер, согласно IEEE802.3ae.
- 2. Для показателя TWDP требуется, чтобы основная плата соответствовала SFF-8431. TWDP рассчитывается с использованием кода Matlab, приведенного в пункте 68.6.6.2 IEEE802.3ae.
- 3. Отражение 12 дБ.
- 4. Условия испытаний приемника в условиях стресса согласно IEEE802.3ae. Для испытаний CSRS требуется, чтобы основная плата соответствовала SFF-8431.
- 5. Перегрузка приемника указана в ОМА и в наихудшем всеобъемлющем напряженном состоянии.

Временные характеристики

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.
ТХ_Откл. время подтверждения	t_off			10	мкс
ТХ_Откл. время отрицания	t_on			1	мс
Время для инициализации, включая сброс TX FAULT	t_int			300	мс
TX_FAULT от сбоя до подтверждения	t_fault			100	мкс
ТХ_Откл. время для начала сброса	t_reset	10			мкс
Время подтверждения потери сигнала приемника	T _A ,RX_LOS			100	мкс
Время отмены потери сигнала приемника	T _d ,RX_LOS			100	мкс
Время смены выбора скорости	t_ratesel			10	мкс
Время синхронизации последовательного идентификатора	t_serial-clock			100	КГц

Назначение контактов:

Описание контактов:

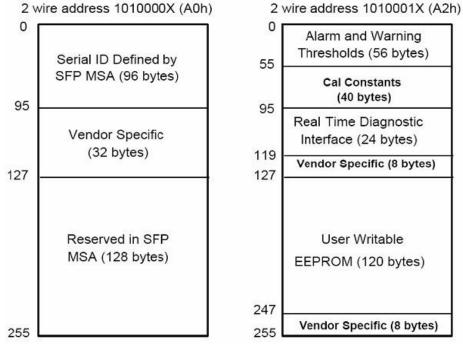
PIN#	Наименование	Функционал	Прим.
1	VeeT	Заземление передатчика модуля	1
2	Tx Fault	Неисправность передатчика модуля	2
3	Tx Disable	Отключение передатчика; Отключает выход лазера передатчика	3
4	SDL	2-проводной последовательный интерфейс ввода/вывода данных (SDA)	
5	SCL	2-проводной последовательный интерфейс ввода часов (SCL)	
6	MOD-ABS	Модуль отсутствует, подключите к VeeR или VeeT в модуле	2
7	RS0	Выбор скорости 0, опционально управляет приемником SFP+. При высоком уровне входная скорость передачи данных >4,5 Гбит/с; при низком уровне входная скорость передачи данных <=4,5 Гбит/с	
8	LOS	Индикация потери сигнала приемника	4
9	RS1	Выбор скорости 0, опционально управляет передатчиком SFP+. При высоком уровне входная скорость передачи данных >4,5 Гбит/с; при низком уровне входная скорость передачи данных <=4,5 Гбит/с	
10	VeeR	Заземление приемника модуля	1
11	VeeR	Заземление приемника модуля	1
12	RD-	Выход инвертированных данных приемника	
13	RD+	Выход неинвертированных данных приемника	
14	VeeR	Заземление приемника модуля	1
15	VccR	Питание приемника модуля 3,3 В	
16	VccT	Питание передатчика модуля 3,3 В	
17	VeeT	Заземление передатчика модуля	1
18	TD+	Вход инвертированных данных передатчика	
19	TD-	Вход неинвертированных данных передатчика	
20	VeeT	Заземление передатчика модуля	1

Примечание:

- 1. Выводы заземления модуля должны быть изолированы от корпуса модуля.
- 2. Этот вывод является выходным выводом с открытым коллектором/стоком и должен быть подтянут на 4,7 кОм-10 кОм к Host_Vcc на главной плате.
- 3. Этот вывод должен быть подтянут на 4,7 кОм-10 кОм к VccT в модуле.
- 4. Этот вывод является выходным выводом с открытым коллектором/стоком и должен быть подтянут на 4,7 кОм-10 кОм к Host_Vcc на главной плате.

Информация и управление EEPROM-модулем SFP

Модули SFP реализуют 2-проводной последовательный протокол связи, как определено в SFP-8472. Информация о последовательном идентификаторе модулей SFP и параметры цифрового диагностического монитора могут быть доступны через интерфейс I2C по адресу A0h и A2h.


Память отображена в Таблице 1.

Подробная информация об идентификаторе (A0h) указана в Таблице 2.

А спецификация DDM по адресу A2h.

Более подробную информацию о карте памяти и определениях байтов см. в SFF-8472, «Интерфейс цифрового диагностического мониторинга для оптических трансиверов». Параметры DDM были внутренне откалиброваны.

Таблица 1. Цифровая диагностическая карта памяти (конкретные описания полей данных)

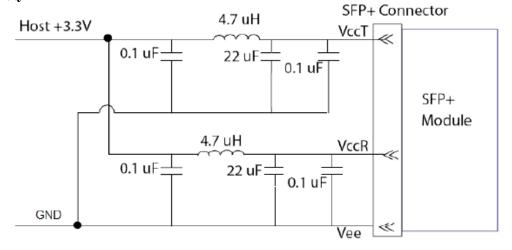
Содержимое памяти последовательного идентификатора (A0h):

Адрес данных	Длина (Байт)	Наименование длинны	Описание и содержание
Базовые поля	идентифин	сатора	
0	1	Identifier	Тип последовательного приемопередатчика (03h=SFP)
1	1	Reserved	Расширенный идентификатор типа последовательного приемопередатчика (04h)
2	1	Connector	Код типа оптического разъема (07=LC)
3-10	8	Transceiver	10GBASE-ER
11	1	Encoding	64B66B
12	1	BR,Nominal	Номинальная скорость передачи данных, единица измерения 100 Мбит/с
13	1	Reserved	(0000h)
14	1	Length(9um,km)	Поддерживаемая длина линии связи для волокна 9/125 мкм, единицы измерения км
15	1	Length(9um)	Поддерживаемая длина линии связи для волокна 9/125 мкм, единицы измерения 100 м
16	1	Length(50um)	Поддерживаемая длина линии связи для волокна 50/125 мкм, единицы измерения 10 м
17	1	Length(62.5um)	Поддерживаемая длина линии связи для волокна 62,5/125 мкм, единицы измерения 10 м

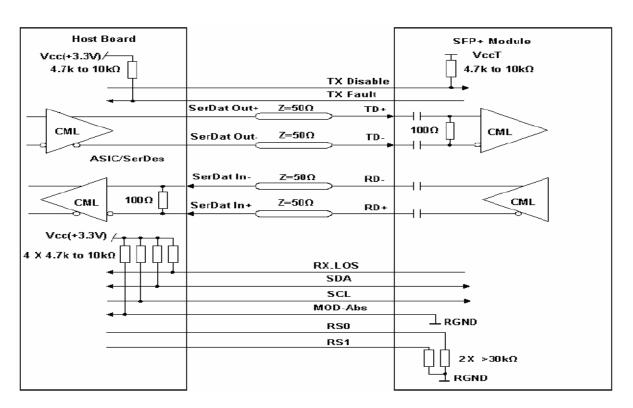
10	1	I 41(C)	Поддерживаемая длина линии связи для меди, единицы
18	1	Length(Copper)	измерения метров
19	1	Reserved	
20-35	16	Vendor Name	Имя поставщика SFP: NEOROS
36	1	Reserved	
37-39	3	Vendor OUI	Идентификатор OUI поставщика трансивера SFP
40-55	16	Vendor PN	Номер изделия: « » (ASCII)
56-59	4	Vendor rev	Уровень ревизии для номера детали
60-61	2	Wavelength	Длина волны лазера
62	1	Reserved	
63	1	CCID	Наименьший значимый байт суммы данных в адресе 0-62
Расширенные	е поля иден	тификатора	
			Указывает, какие оптические сигналы SFP реализованы
64-65	2	Option	(001Ah = LOS, TX_FAULT, TX_DISABLE BCe
			поддерживаются)
66	1	BR, max	Верхний предел скорости передачи данных, единицы %
67	1	BR, min	Нижний предел скорости передачи данных, единицы %
68-83	16	Vendor SN	Серийный номер (ASCII)
84-91	8	Date code	Код даты изготовления
92	1	Diagnostic Type	Диагностика
93	1	Enhanced	Диагностика
93	1	Options	диа постика
94	1	SFF-8472	Диагностика
95	1	CCEX	Проверочный код для расширенных полей идентификатора
	-		(адреса с 64 по 94)
Поля идентис	рикатора по	оставщика	
96-127	32	Readable	Данные, указанные поставщиком, только для чтения
128-255	128	Reserved	Зарезервировано для SFF-8079

Характеристики цифрового диагностического монитора

	TI	- I	
Адрес данных	Парамерт	Точность	Ед. измерения
96-97	Внутренняя температура приемопередатчика	±3.0	°C
98-99	Внутреннее напряжение питания VCC3	±5.0	%
100-101	Ток смещения лазера	±10	%
102-103	Выходная мощность Тх	±3.0	дБм
104-105	Входная мощность Rx	±3.0	дБм


Соответствие стандартам:

Трансивер NR-SFP-10G-LR40-LC2 разработан в соответствии с безопасностью лазеров класса I и сертифицирован по следующим стандартам:


Особенность	Агентство	Стандарт	Сертификат/ Комментарии
Электростатический разряд		Электростатический разряд	
(ESD) на электрические штыри	MIL-STD-883E	(ESD) на электрические контакты	MIL-STD-883E
Метод 3015.7	Класс 1(>1000 V)	Метод 3015.7	Класс 1(>1000 V)
Электростатический разряд (ESD)		Электростатический разряд (ESD)	

Рекомендуемая схема:

Рекомендуемая схема питания главной платы

Рекомендуемая высокоскоростная интерфейсная схема

Механические размеры

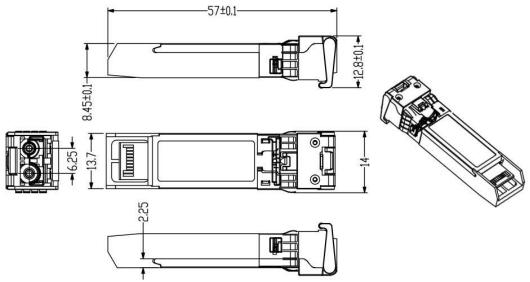


Рисунок: Габаритные характеристики

ООО «Неорос» оставляет за собой право вносить изменения в продукты или информацию, содержащуюся здесь, без предварительного уведомления.