

Оптический приемопередатчик Форм-фактор SFP+ 10G LRM 1310нм MMF 220м LCx2 NR-SFP-10G-LRM-LC2

Особенности:

- Поддерживает скорость передачи данных от 1,0 до 11,3 Гбит/с
- Форм-фактор SFP+ с возможностью горячего подключения
- Дуплексный разъем LC
- Передатчик FP 1310 нм, фотодетектор PIN
- ММФ-соединения до 220 м
- Встроенные функции цифровой диагностики
- Источник питания: +3,3 В
- Потребляемая мощность <1 Вт
- Температура рабочего корпуса: 0~70 °C
- Соответствует RoHS

Применение:

- 10G Ethernet
- SDH/SONET
- Fibre Channel

Описание:

Трансиверы Neoros NR-SFP-10G-LRM-LC2 это очень компактный оптический приемопередающий модуль 10 Гбит/с для последовательных оптических коммуникационных приложений на скорости 10 Гбит/с. Модуль преобразует последовательный электрический поток данных 10 Гбит/с в оптический выходной сигнал 10 Гбит/с и оптический входной сигнал 10 Гбит/с в последовательные электрические потоки данных 10 Гбит/с. Высокоскоростной электрический интерфейс 10 Гбит/с полностью соответствует спецификации SFI. Высокопроизводительный 1310 нм FP передатчик и высокочувствительный приемник PIN обеспечивают превосходную производительность для нескольких приложений с линиями связи до 220 м на ММF.

Модуль SFP+ совместим с SFF-8431, SFF-8432. Функции цифровой диагностики доступны через 2-проводной последовательный интерфейс, как указано в SFF-8472.

Полностью совместимый с SFP форм-фактор обеспечивает возможность горячего подключения, простую модернизацию оптического порта и низкое излучение электромагнитных помех.

Выбор продукта:

NR-SFP-10G-LRM-LC2	Оптический модуль SFP+ 10G LRM 1310нм MMF 220м LCx2, коммерческий температурный диапазон от 0 до +70°C
--------------------	--

- * РУС Продукция предприятия включена в реестр российской промышленной продукции.
- * РЭП Единый реестр российской радиоэлектронной продукции (ПП РФ 878).

Абсолютные максимальные значения

Нагрузка, превышающая любое из индивидуальных абсолютных максимальных значений, может вызвать немедленное катастрофическое повреждение модуля, даже если все другие параметры находятся в пределах рекомендуемых условий работы.

Параметры	Символ	Мин.	Макс.	Ед.изм.
Температура хранения	Ts	-40	85	°C
Рабочая температура корпуса	T_A	0	70	°C
Напряжение питания	VCC	-0.5	4	В
Относительная влажность	RH	0	85	%

Рекомендуемая рабочая среда

Рекомендуемая рабочая среда определяет параметры, при которых электрические и оптические характеристики остаются в пределах нормы.

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.
Напряжение питания	VCC	3.135	3.300	3.465	В
Рабочая температура корпуса	TC	0	25	70	°C

Электрические характеристики

Следующие электрические характеристики определены для Рекомендуемой Рабочей Среды.

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.
Напряжение питания	Vcc	3.135		3.465	В	
Ток питания	Icc			300	мА	
Потребляемая мощность	P			1	Вт	
Передатчик:						
Входной дифференциальный импеданс	R_{in}		100		Ω	1
Диапазон дифференциального входного напряжения	Vin,pp	100		1000	мВ	
Напряжение отключения передачи	V_{D}	2		Vcc	В	
Напряжение включения передачи	VEN	Vee		Vee+0.8	В	
Приёмник:						
Диапазон дифференциального выходного напряжения	Vo	300		1000	мВ	
LOS ошибка	VLOS fault	2		VccHOST	В	2
LOS нормальный	VLOS norm	Vee		Vee+0.8	В	2

Примечание:

- 1. Подключен напрямую к входным контактам данных ТХ. Связь по переменному току от контактов в ИС драйвера лазера.
- 2. LOS выход с открытым коллектором. Должен быть подтянут к 4,7 кОм -10 кОм на главной плате. Нормальная работа логический 0; потеря сигнала логическая 1.

Оптические характеристики

Следующие оптические характеристики определены для рекомендуемой рабочей среды.

Параметр	Символ	Мин.	Тип.	Макс.	Ед.изм.	Прим.
Передатчик:						
Центральная длина волны	λt	1260	1310	1355	НМ	
Среднеквадратическая ширина спектра	λRMS			4	НМ	
Средняя оптическая мощность	Pavg	-6.5		-1	дБм	
Мощность выключенного лазера	Poff			-30	дБм	
Коэффициент поглощения электромагнитного излучения	ER	3.5			дБ	
Приемник:						
Центральная длина волны	λr	1260	1310	1620	НМ	
Чувствительность приемника	Sen			-11.1	дБм	1
Входная мощность насыщения (перегрузка)	Sat	0			дБм	
Los утверждение	LOS_A	-30		-	дБм	
Los отмена сигнала	LOS_D			-12	дБм	
Los Гистерезис	LOS _H	0.5			дБ	

Примечание:

Назначение контактов

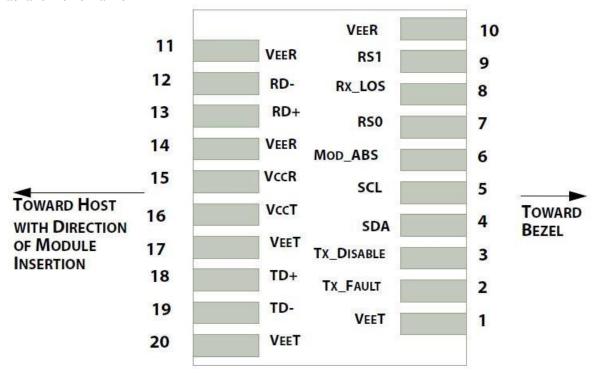


Рисунок: Схема блока разъемов главной платы. Номера и названия контактов

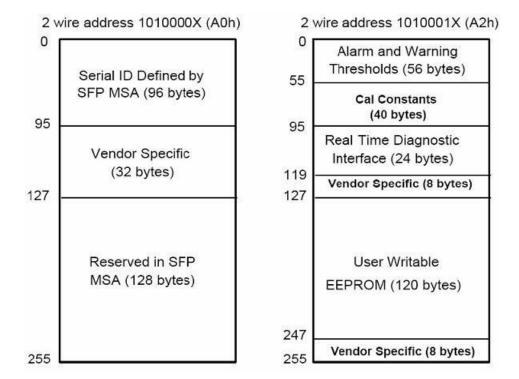
^{1.} Измерено с помощью тестового шаблона PRBS 2^{31} -1 при 10,3125 Гбит/с, BER $< 10^{-12}$.

Определение контактов

Контакт	Символ	Название/Описание	Прим.
1	VeeT	Заземление передатчика модуля	1
2	Tx Fault	Неисправность передатчика модуля	2
3	Tx Disable	Отключение передатчика; отключает выход лазера передатчика	3
4	SDA	Ввод/вывод данных двухпроводного последовательного интерфейса (SDA)	
5	SCL	Вход синхронизации двухпроводного последовательного интерфейса (SCL)	
6	MOD-ABS	Модуль отсутствует, подключите к VeeR или VeeT в модуле	2
7	RS0	Выбор скорости 0. Не используется	
8	LOS	Индикация потери сигнала приемника	4
9	RS1	Выбор скорости 1. Не используется	
10	VeeR	Заземление приемника модуля	1
11	VeeR	Заземление приемника модуля	1
12	RD-	Выход инвертированных данных приемника	
13	RD+	Выход неинвертированных данных приемника	
14	VeeR	Заземление приемника модуля	1
15	VccR	Питание приемника 3,3 В модуля	
16	VccT	Питание передатчика 3,3 В модуля	
17	VeeT	Заземление передатчика модуля	1
18	TD+	Выход неинвертированных данных передатчика	
19	TD-	Выход инвертированных данных передатчика	
20	VeeT	Заземление передатчика модуля	1

Примечания:

- 1. Контакты заземления модуля должны быть изолированы от корпуса модуля.
- 2. Этот контакт является выходным контактом с открытым коллектором/стоком и должен быть подтянут на 4,7 кОм-10 кОм к Host_Vcc на главной плате.
- 3. Этот контакт должен быть подтянут на 4,7 кОм-10 кОм к VccT в модуле.
- 4. Этот контакт является выходным контактом с открытым коллектором/стоком и должен быть подтянут на 4,7 кОм-10 кОм к Host_Vcc на главной плате.



Информация EEPROM модуля SFP и управление

Модули SFP реализуют протокол двухпроводной последовательной связи, как определено в SFP -8472. Последовательную идентификационную информацию модулей SFP и параметры цифрового диагностического мониторинга можно получить через интерфейс I2C по адресам A0h и A2h. Память отображена в таблице 1.

Более подробную информацию о карте памяти и определениях байтов см. в SFF-8472, «Интерфейс цифрового диагностического мониторинга для оптических трансиверов». Параметры DDM были откалиброваны внутри.

Таблица 1. Карта памяти цифрового диагностического модуля (описание полей данных):

Характеристики цифрового диагностического мониторинга:

Адрес данных	Параметр	Точность	Единица
96-97	Внутренняя температура трансивера	±3.0	°C
98-99	Внутреннее напряжение питания VCC3	±3.0	%
100-101	Ток смещения лазера	±10	%
102-103	Выходная мощность передатчика	±3.0	дБм
104-105	Входная мощность приемника	±3.0	дБм

Схема фильтра питания на плате хоста

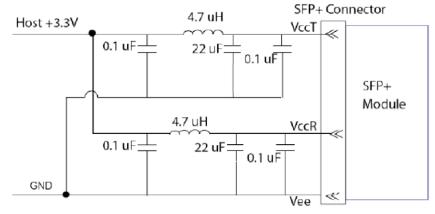


Рисунок: Рекомендуемая схема питания главной платы

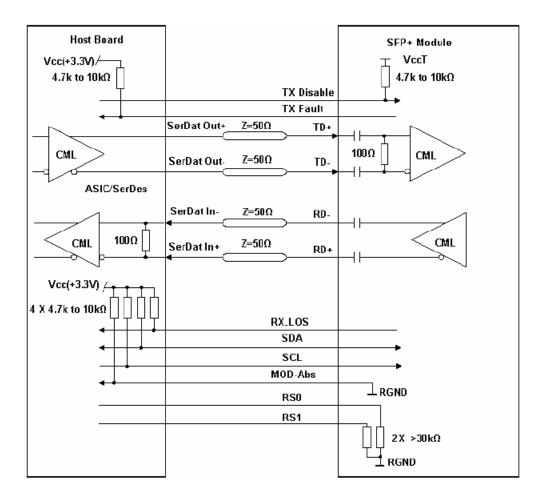


Рисунок: Рекомендуемая высокоскоростная интерфейсная схема

Механические спецификации

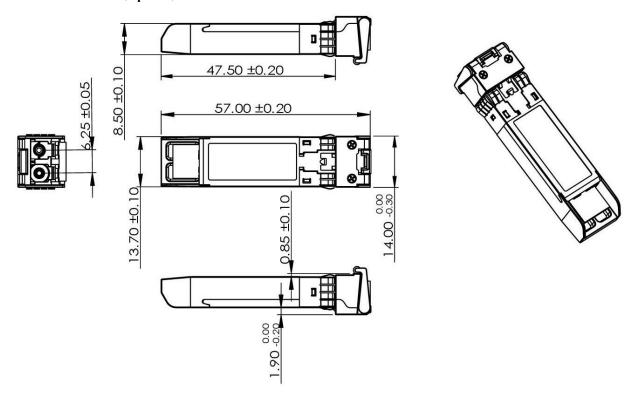


Рисунок 5: Механические спецификации

ООО «Неорос» оставляет за собой право вносить изменения в продукты или информацию, содержащуюся здесь, без предварительного уведомления.